U.S. Department of Energy Hydrogen and Fuel Cells Program

2016 Annual Merit Review and Peer Evaluation Meeting

Washington, DC

June 6, 2016

Dr. Sunita Satyapal

Director
Fuel Cell Technologies Office
U.S. Department of Energy

- History
- Progress
- Future

Fuel Cells: Big Leaps in the Last Year

Honda FCV

Commercial FCEVs are here today!

Market Growth in Fuel Cell Sales

Source: Navigant Research (2008-2013) & E4tech (2014-2015)

Fuel cell powered lights at the Superbowl

Fuel Cells: Big Leaps in the Last Year

The First Ever **National Hydrogen & Fuel Cell Day** (Held on its very own atomicweight-day)

www.energy.gov/eere/fuelcells

DOE Activities Span from R&D to Deployment

Research & Development

4X increase in durability

\$53/kW in 2015*

at high volume

\$124/kW in 2006

2.

Demonstration

Deployment

Forklifts, back-up power, **Fuel Cells** airport cargo trucks, parcel >50% decrease in cost delivery vans, marine since 2006 APUs, buses, mobile 5X less platinum lighting, refuse trucks

> >220 FCEVs, >30 stations, >6M miles traveled

World's first tri-gen station

FCEV: Fuel Cell Electric Vehicle

~18,000 20 units 16 BU **POWER** >11X 12 additional purchases 8 LIFT **TRUCKS** 4 ~1,600 units **BU POWER** O WITH DOE W/O DOE **FUNDING FUNDING** (COST SHARE (ADDITIONAL **DEPLOYMENTS)** PURCHASES) **BU: Back Up Power**

*\$280/kW low volume

Savings from Active Project **Management & Downselects**

DOE Impact- H₂ and Fuel Cells

From DOE-supported Commercial Technologies:

450 jobs average per year

From ARRA-supported Technology Deployments

1,400 jobs created or sustained

ARRA: American Recovery and Reinvestment Act

Examples of Commercial Technologies

- Catalysts
 Fuel Cell System Components
- TanksElectrolyzers

Impact of DOE Investment on Industry

Revenues

More than

the DOE Investment

Additional Investment

the DOE Investment

*for selected companies

What can we learn from history?

Henry Ford and his first car, the Quadricycle, built in 1896

FORD CARS

1909 MODELS

The enormous demand for the new 4-cylinder Model "T" touring car makes it impossible for us to get these cars on short notice; deliveries will be made strictly in the order given. If you want one of these cars, see us soon.

\$850 f. o. b. factory

Colorado Auto Supply Co.
Distributers
8-10 E. BIJOU STREET

Three or four splendid secondhand cars for sale cheep.

DOE Cost Targets and Status

2020 Targets

High-Volume Projection

Low-Volume Estimate

Key Challenges- Examples

- PGM loading
- Catalyst and membrane durability
- Electrode performance and durability

- Efficiency and Reliability
- Feedstock and Capital Costs
- Compression, Storage and Dispensing (CSD) Costs

- Carbon fiber precursors and conversion
- Composite/resin materials
- BOP and assembly costs

^{*}Based on Electrolysis **Based on NG SMR

Fuel Cell Technologies Office | 12

Cost* Renewable H₂ Production Pathways

World Record

Solar-to-hydrogen Efficiency

16.4%

Benchmarked under outdoor sunlight at NREL

Source: NREL

H₂ Cost* Targets

*at the pump

Cost of Delivering and Dispensing H₂ from Central Production

- Projected to high volume with economies of scale
- Delivery/dispensing apportionment of the <\$4/kg P&D target

World Record

- First ever liquefaction of a gas from room temperature with magnetocaloric cooling
- Record breaking 100°C temperature span

Source: PNNL, Emerald Energy, Ames Laboratory

Cost* of High Pressure H₂ Storage System

*Assumes high volume (500K/yr.), 2007\$, 700-bar type IV single tank system. Based on program record 15013

12%

Net Cost Reduction since 2013 for H₂ storage systems

World's First

- Two H₂ molecules adsorbed at a single metal site
- Synthetic path to materials with higher densities of adsorbed H₂

Source: Runčevski, T.; Kapelewski, M. T.; Torres-Gavosto, R. M.; Tarver, J. D.; Brown, C. M.; Long, J. R. *Chem. Commun.*, submitted.

Modeled Cost* of Fuel Cell System Over Time

* 80-kW_{net} PEM fuel cell system projected to high-volume* manufacturing

Ultimate DurabilityTarget Established

World Record

- Alkaline exchange
 Membrane
- Record breaking durability
- Opportunities in flow batteries/electrolysis

Source: SNL

Tools, Models and Databases Online

Resources

"Toolbox" online:

- HyRAM
- HDSAM
- H2FAST
- H2A
- JOBS and more

Available now at:

http://energy.gov/eere/fuelcells/hydrogen-analysis-toolbox

H2Tools.org

Coming in September/October 2016: Supply Chain Exchange and Partnership Development Regional Forum- North Canton, OH

Organized by Ohio Fuel Cell Coalition (OFCC) and Partners

Supplier engagement & collaboration & information readily and publicly accessible

Supporting veterans and their families in 3 areas:

Strong Commitment by the H₂ and Fuel Cells Community

> **Air Liquide and PDC** committed to hiring veterans for 10% of their workforce

What can we learn from early gasoline infrastructure?

Many diverse options

Cans, barrels, home models, mobile refuelers

Source: M. Melaina 2008.

Source: Vieyra, 1979

Source: Milkues, 1978

Refueling Methods Evolved Over Time

Source: Turn of the Century Refueling: A Review of Innovations in Early Gasoline Refueling Methods and Analogies for Hydrogen (Melaina 2007)

History shows phased introduction of different refueling methods

CA: ~ 20 stations now, up to 100 planned

Northeast: 12 stations planned

*Includes current (21), future (38) and retired (2) stations

Delivered Compressed SMR

On-Site Electrolysis

Delivered Liquid SMR

On-Site SMR

Other

Delivered Pipeline

Delivered Liquid By-Product

Delivered Compressed By-Product

On-Site Tri-Gen

Mobile Fueler

Trailers

Real World Operation Data- H₂ Infrastructure

Example: Sources of H₂ Infrastructure Maintenance

Compressor

Dispenser

Entire

Safety

Storage

Reformer

Thermal Management

Other Chiller, Feedwater

Most maintenance related to compressors and dispensers

Contamination is a key issue: See Database www.nrel.gov/hydrogen/system contaminants data/

To participate: techval@nrel.gov

\$1M Competition: On-site H₂ fueling

Finalist Team Announced! More at hydrogenprize.org

simple.fuel.™

Email your Feedback info@teamsimplefuel.com

Innovative packaging concepts Electrolysis 350 and 700 bar

DOE H₂ Infrastructure Strategy

EXAMPLES

- HySTEP
- Reference Station Design
- Contaminant Report

SHOWCASE STATION (HyTEST)

TOOLS

(HyRAM- Hydrogen Risk Assessment Models)

DOE efforts support public-private partnership:

H₂USA

Hydrogen & Fuel Cells Budget

Key Activity	FY 15	FY 16	FY17
	(\$ in thousands)		
	Approp.	Approp.	Request
Fuel Cell R&D	33,000	35,000	35,000
Hydrogen Fuel R&D ¹	35,200	41,050	44,500
Manufacturing R&D	3,000	3,000	3,000
Systems Analysis	3,000	3,000	3,000
Technology Validation	11,000	7,000	7,000
Safety, Codes and Standards	7,000	7,000	10,000
Market Transformation	3,000	3,000	3,000
Technology Acceleration	0	0	13,000 ²
NREL Site-wide Facilities Support	1,800	1,900	N/A
Total	97,000	100,950	105,500

Office	FY 2016*
EERE	\$101.0M
Basic Science	\$18.5M
Fossil Energy, SOFC	\$30.0M

FY 2016 DOE Total: ~\$150M

*Estimated for BES funding (based on FY15)

New in FY17 Request

¹Hydrogen Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D

²Combines Manufacturing R&D, Technology Validation, Market Transformation.

Sustained, stable funding requests and appropriations

Lab Impact Initiative

- Tech to Market
- Small Business Vouchers
- Lab Corps

Example:

FCTO will provide
50% cost share for
up to 10 partners
through 'streamlined'
CRADA

(up to \$50K total per project)

Contact Karren More (morekl1@ornl.gov)

Consortium Approach

Multi-lab core capabilities with steady influx of new partners

New Consortia to Address Key Challenges

3 Consortia Launched:

Supporting the Energy Materials Network

PGM-Free Catalysts for Fuel Cells

Advanced Research for Hydrogen Storage Materials

Advancing fuel cell performance and durability through six areas:

Visit www.fcpad.org

- 1. Electrocatalysts and Supports
- 2. Electrode Layer
- 3. Ionomers, GDL, Bipolar Plates
- 4. Modelling and Validations
- 5. "Operando" Evaluation
- 6. Component Characterization

Future: Renewable Hydrogen Consortium

Will be led by NREL with SNL and LBNL on core team: Multiple partners to be added in FY17

Focus: Materials for Renewable H, Production including:

Advanced **Electrolysis**

Photoelectrochemical

Solar Thermochemical

Future Focus: Renewable Hydrogen Production

What does lava flowing into water & STCH* production have in common?

Two-step thermochemical water-splitting cycle I

* Solar Thermochemical Hydrogen production

Source: McDaniel Anthony (SNL)

Harnesses the same physics occurring with lava flowing into water to produce H₂

H₂@Scale: Vision for the Future

Looking for your online feedback Visit display by registration desk

*Illustrative example, not comprehensive Source: NREL; Lab Big Idea Summit

https://www.surveymonkey.com/r/h2atscale

H₂ @ Scale Potential:

Reduction by Sector

75% Grid

25%
Transportation

25% Industrial

A CLEANER FUTURE

50% fewer GHG emissions than today by 2050

MORE

Jobs Security Resiliency

Collaborations and Partnerships

R&D

Demonstration & Deployment

Accelerated Commercialization

- Pre-Competitive R&D
- USCAR, energy companies, EPRI and utilities

- Implementing Agreements
- 25 countries

- International Government Coordination
- 18 countries and European Commission

- Public-Private Partnership
- >45 partners
- FCHEA (trade association)

Hydrogen and Fuel Cells Technical Advisory Committee (HTAC)

Industry, academia and state & federal stakeholders working together

Thank You

Dr. Sunita Satyapal

Director

Fuel Cell Technologies Office

Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov