Solar powered two-step thermochemical watersplitting cycle to produce H₂ (STCH)

$$MO_x \rightarrow MO_{x-\delta} + \frac{\delta}{2}O_2$$

(1) Reduction

$$MO_{x-\delta} + \delta \cdot H_2O \rightarrow MO_x + \delta \cdot H_2$$

(2) Oxidation

$$\delta \cdot H_2 O \rightarrow \frac{\delta}{2} O_2 + \delta \cdot H_2$$

(3) Thermolysis

MW scale concentrating solar power facilities provide heat

Cycle conditions and system metrics:

Reduction Temperature (T _{high})	<2000°C
O ₂ fugacity in reduction (p _{low})	f _{gas} < <solid< td=""></solid<>
Oxidation Temperature (T _{low})	debated
O ₂ fugacity in oxidation (p _{high})	f _{gas} >>solid
H ₂ production rate	50-100mt/day
Solar-to-H ₂ conversion efficiency	>25%
H ₂ production cost	\$3/gge at plant gate

- What and how to benchmark materials?
 - composition, thermodynamics, kinetics, mechanical properties, compatibility, etc...

Benchmarking STCH materials at Sandia

derive P_{O2} -T- δ relation from experimental data (i.e., TGA, other)

apply material thermodynamic model to reactor efficiency model

■ Requires high-quality experimental data over large P_{02} -T- δ range.

derive kinetic information at technology-specific conditions using idealized flow reactor

- Many cycles under high radiative flux.
- Technology-specific operation.

derive structural and mechanistic information using advanced diagnostics (i.e., HTXRD, ToF-SIMS)

 Great potential for operando synchrotron X-ray scattering!

Benchmarking STCH materials at Sandia

National Solar Thermal Test Facility

Cascading Pressure Receiver/Reactor (CPR2)

PATHWAY FOR ADVANCING TRL...

- 16kWth solar furnace.
- 6MW_{th} power tower.
- Technology-specific operation at scale.

- ~5kW_{th} system capable of producing 0.5slpm H₂.
- Derive engineering test data necessary for model validation and scale-up.