Solar powered two-step thermochemical watersplitting cycle to produce H₂ (STCH) $$MO_x \rightarrow MO_{x-\delta} + \frac{\delta}{2}O_2$$ (1) Reduction $$MO_{x-\delta} + \delta \cdot H_2O \rightarrow MO_x + \delta \cdot H_2$$ (2) Oxidation $$\delta \cdot H_2 O \rightarrow \frac{\delta}{2} O_2 + \delta \cdot H_2$$ (3) Thermolysis MW scale concentrating solar power facilities provide heat #### Cycle conditions and system metrics: | Reduction Temperature (T _{high}) | <2000°C | |---|--| | O ₂ fugacity in reduction (p _{low}) | f _{gas} < <solid< td=""></solid<> | | Oxidation Temperature (T _{low}) | debated | | O ₂ fugacity in oxidation (p _{high}) | f _{gas} >>solid | | H ₂ production rate | 50-100mt/day | | Solar-to-H ₂ conversion efficiency | >25% | | H ₂ production cost | \$3/gge at plant gate | - What and how to benchmark materials? - composition, thermodynamics, kinetics, mechanical properties, compatibility, etc... ### Benchmarking STCH materials at Sandia derive P_{O2} -T- δ relation from experimental data (i.e., TGA, other) apply material thermodynamic model to reactor efficiency model ■ Requires high-quality experimental data over large P_{02} -T- δ range. derive kinetic information at technology-specific conditions using idealized flow reactor - Many cycles under high radiative flux. - Technology-specific operation. derive structural and mechanistic information using advanced diagnostics (i.e., HTXRD, ToF-SIMS) Great potential for operando synchrotron X-ray scattering! ## Benchmarking STCH materials at Sandia **National Solar Thermal Test Facility** Cascading Pressure Receiver/Reactor (CPR2) #### PATHWAY FOR ADVANCING TRL... - 16kWth solar furnace. - 6MW_{th} power tower. - Technology-specific operation at scale. - ~5kW_{th} system capable of producing 0.5slpm H₂. - Derive engineering test data necessary for model validation and scale-up.