

2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

Development of Applied Membrane Technology for Processing of Ethanol from Biomass

Date: May 20-23, 2013 Technology Area Review: Biochemical Conversion

Principal Investigator: Stuart Nemser, PhD Organization: Compact Membrane Systems

Goal Statement

- Enhance the low-cost production of bioethanol
- Develop membrane system
- Demonstrate drying ethanol to fuel grade
- Demonstrate long term resistance

Quad Chart Overview

Timeline

- Project start date: 6/29/2006
- Project end date: 3/31/2013
- Percent complete: 100%

Budget

- Funding for FY06: \$495,000/\$123,750
- Funding for FY08: \$492,000/\$123,000
- Years the project has been funded / average annual funding: 6.5 years @ ~ \$152,000/year

Barriers

- Barriers addressed
 - Develop EtOH/Temp. resistant components
 - Scale up system
 - Demonstrate long term performance

Partners

- Interactions/ collaborations
 - CMS working with 2 potential customers
 - All research and project management performed solely by CMS

Project Overview

- Need for production of low cost fuel-grade ethanol from renewable sources
- Drying ethanol by conventional methods: costly and energy intensive
- Enhance low-cost production by means of a novel waterethanol separation membrane and process
- Bio-ethanol plants tend to be small
- Membrane processes are ideal for
 - ✓ Small applications
 - ✓ Removing small components
- Commercial liquid dehydration platform established

1 - Approach

- Develop membrane system that removes the minor component
- Overall technical approach:
 - ✓ Experimental
 - ✓ Scale up demonstrated prototype
 - ✓ Pilot test
 - ✓ Use of real feedstock
 - ✓ Engineering design
 - ✓ Critical path

2 - Technical Accomplishments (Summary)

> The program goals were successfully achieved.

- Developed a thermally and ethanol (chemically) resistant membrane system that demonstrated:
 - ✓ Fuel grade ethanol production from wet ethanol
 - ✓ Steady operation for 50 days
 - ✓ Withstood multiple startups/shutdowns
 - Efficient operation in a wide range of water content in the ethanol

2 – Progress/Results (cont'd) Project Tasks

- ✓ Develop epoxy/potting system
- ✓ Develop hollow fiber membranes
- ✓ Scale-up/Optimize module performance
- ✓ Demonstrate stability for at least 30 days
- ✓ Demonstrate production of 99.5% ethanol

2 – Progress/Results (cont'd) Membrane System

- 1. Composite hollow fiber membrane
 - Perfluorinated polymer
 - Microporous support
- 2. Epoxy potting system

2 – Progress/Results (cont'd) Develop epoxy/potting system

- Epoxy resistant to ethanol at 120°C was demonstrated
- 1.5 year exposure test
 - ✓ Retained bonding capability
 - Retained sealing capability for ethanol vapor

2 – Progress/Results (cont'd) Develop hollow fiber membranes

- Composite hollow fiber
 - Optimized microporous hollow fiber support
 - Coated CMS perfluorinated polymer on support
 - Fabricated several thousand feet of membrane
- Testing shows that the membrane meets gas tests performance specifications
- Soaking in hot ethanol does not affect performance

2 – Progress/Results (cont'd) Scale-up/Optimize module performance

Successfully scaled up membrane module

- Scale-up factor: 150x
- Performance conserved

	H2O	EtOH
Area	permeability	permeability
(ft ²)	(Barrer)	(Barrer)
0.05	1500	110
7.5	1900	100

2 – Progress/Results (cont'd) Demonstrated stability for at least 30 days

2 – Progress/Results (cont'd) Demonstrate production of 99.5% ethanol

3 - Relevance

- This program has developed a more cost effective and energy efficient method of drying ethanol than conventional method
- The proposed method can be used in biofuel plants for final drying of product
- Implementation should facilitate production of fuels from biomass and promote energy independence
- ✓ Commercial liquid dehydration platform established
- ✓ Economic evaluation
 - ✓ Ethanol lower capital cost
 - ✓ Biodiesel better at up to 2M GPY

4 - Critical Success Factors

Successful implementation of ethanol from cellulosic sources

- ✓ Pilot demonstration at ethanol plant
- ✓ Successful field demonstration
- ✓ Overcoming industry risk-aversion

5. Future Work by CMS

Field demonstrations

Market development and Commercialization

Summary

Developed membrane system for drying ethanol and demonstrated:

- 1) Ethanol and high temperature (up to 120°C) resistant components
- 2) Drying ethanol to fuel grade
- 3) Long term stability
- 4) Stable performance over wide range of water content (<0.05%)
- 5) Rugged: withstood dozens of startup/shutdown cycles

Additional Slides

Additional Slides

PHoenix[®]C4

Specifications

Flow Rate: 4 gpm constant Inlet/Outlet Connections: 1" Male JIC Available Voltage: 110 V or 220V Max Amp Draw: 10 Amps Fluid Pump Motor: 1/2 HP Washdown Dry Weight: 250 Lbs Inlet Pressure Range : -10 hg - 10 psig Max Outlet Pressure: 45 psig Maximum Oil Viscocity: 3000 Cst Minimum Oil Viscocity: 3000 Cst Maximum Operating Ambient: 33F Maximum Pree Water Removal: 2-3 Gallons/Day (Depending on Water Content, Oil Temp and Oil Type)

Oil Type: Low Volatile Mineral Based Phosphate Ester Optional

Recommended Oil Reservoir Size: 10 - 600 gallons (Larger Possible depending on water ingression rate)

Ordering Information

-			_	
PHX-C4	Table 1	Table 2	Table 3	Table 4
	Voltage	Aquatries	Housing	Oil Type

A	110 V 60Hz - SP Standard
B	220 V 60Hz - SP Optional
able 2: A	quatrex Moisture Monitoring
able 2: A	quatrex Moisture Monitoring Without Aquatrex

Dimensions

Spare Parts	Qty	Part Number
Vent Filter	1	FS-05-25
V Seal Kit	2	K757
219 Filter	1	UE219++20Z
Optional 319	1	UE319++20Z
Filter Micron		AZ 1 Micron
add to ++ in		AP 3 Micron
Part Number		AN 7 Micron
		AS 12 Micros

E	20" Pall UR219 7 Micron
F	20" Pall UR319 7 Micron
able 4: C	Dil Type
ible 4: C G	Dil Type Mineral Based Only

Publications, Presentations, and Commercialization

- U.S. Patent application (US20120283489), "Removal of Water from Fluids", has been allowed
- CMS working with two potential users to demonstrate/implement CMS technology in their commercial operations
- Market development study commissioned by CMS is under way
- Commercial liquid dehydration platform established