2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

Bio-Oil Technology Area Review

May 22, 2013

Zia Abdullah

Battelle Memorial Institute

John Lee

Pacific Northwest National Laboratory

Battelle

The Business of Innovation

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goal/Objective Statement

Develop a hydroprocessing system & catalysts tailored for the Catalytic Bio-Oil produced by Battelle's Ex Situ fast pyrolysis and vapor-phase upgrading system

Addresses all FOA-0000342 Objectives

Supports Bioenergy Technology Office Pathway #3

Supports Battelle's Small Scale Biofuels Production Systems

DE-FOA-0000342

FOA objectives

- 1. Address bio oil corrosivity;
- 2. De-oxygenate bio-oil;
- 3. H/C product 30% blendable with ASTM petroleum fuels
- 4. Provide data to demonstrate product compatibility with petroleum refining unit operations.

B.T.O. Pathways

- 1. Fast Pyrolysis;
- 2. In-situ catalytic fast pyrolysis; Is-situ cat. fast pyrolysis;
- 3. Ex-situ catalytic fast pyrolysis;
- 4. Hydropyrolysis;
- 5. Hydrothermal liquefaction
- 6. Solvent liquefaction

Industry Needs

Battelle

- 1. Drop-in fuel
- 2. Competitive at market price
- 3. Low capital needs
- 4. Scalable
- 5. Feedstock flexible
- 6. Environmentally sustainable
- 7. Near to Mid Term Economic Potential

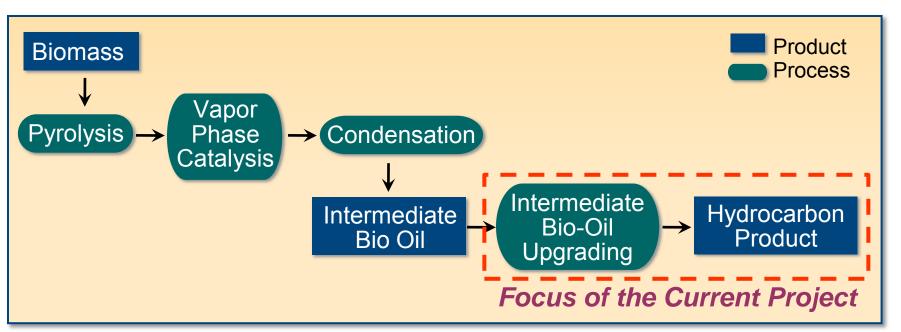
Project Quad Chart Overview

Timeline

Barriers

Tt-E: Pyrolysis of Biomass:

Development of new methods to control the pyrolytic pathways to bio-oil intermediates in order to increase product yield and quality


Budget

Year	DOE Funding	Cost Share
FY 2011	\$ 60,817	\$ 243, 091
FY 2012	\$ 811,432	\$ 388,710
FY 2013 (to 2/2013)	\$ 181,058	\$ 136,454
FY 11, 12, 13 Average	\$ 360,000	\$ 240,000
Total	\$2.1 M Battelle \$1.1M PNNL	\$ 818,200 (20%)

Partners & Roles

Organization	Role(s)
Battelle	PI., PM.
PNNL	H.T. Cat. dev., TEA
Marathon	Fuel assessment
Domtar	Feedstock supply
Praxair	Options for hydrogen
Sud Chemie	Catalyst manufacturer

Project Overview

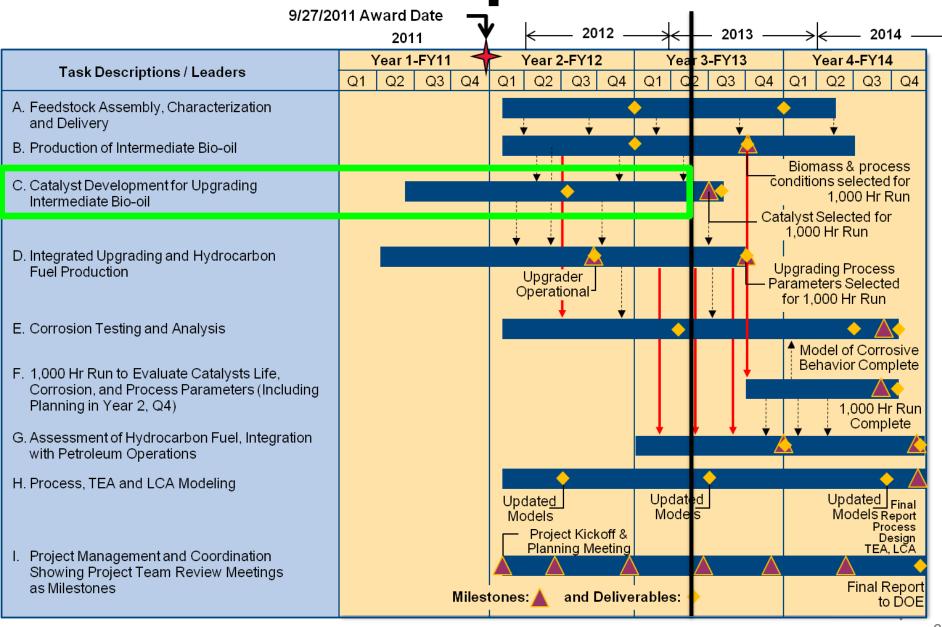
Key Technical Barriers Addressed by This Project

Technical Barrier	Project Focus to Address technical Barrier
H/T catalyst coking	Development of new catalysts for intermediate bio oil
H/T catalyst coking	Construction of H/T with regeneration capability
Corrosion of materials of const.	Generate data on corrosion due to Intermediate Bio-Oil
Catalyst deactivation preventing long term operation	Demonstration of 1,000 hrs hydrotreater operation on single catalyst charge

Battelle

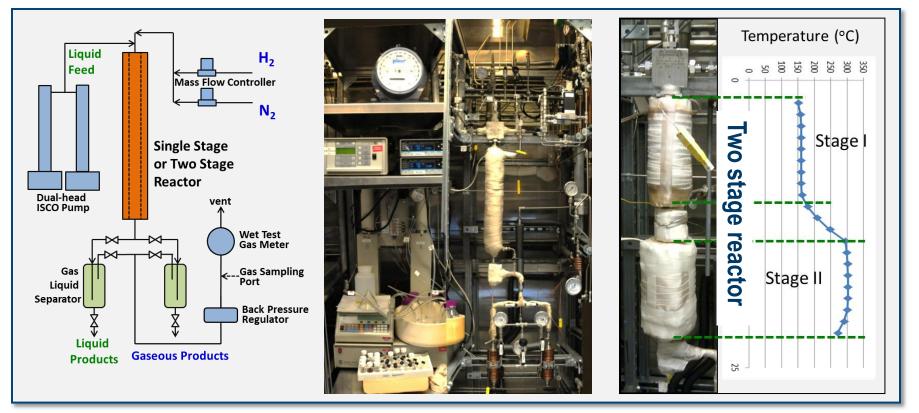
Battelle

The Business of Innovation


1 - Approach

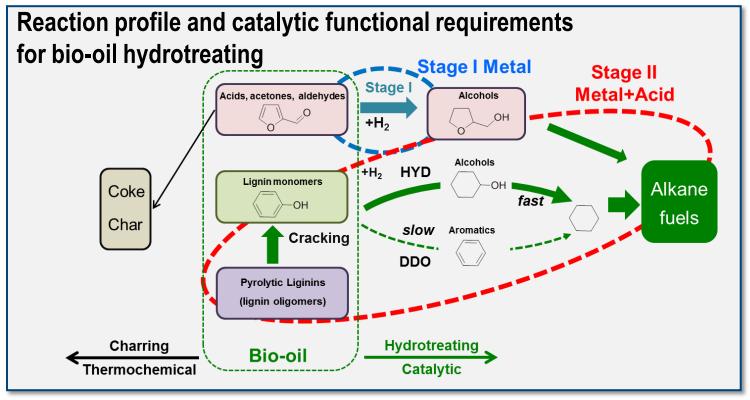
Technical Approach:

- Catalyst development for upgrading catalytic pyrolysis bio-oil (PNNL)


 - Build Lab-scale
 hydrotreater
 Screen catalyst using model compounds
- Evaluate catalysts with bio oil
 - Establish operating parameters
- Integrated Upgrading & hydrocarbon production (BMI)
 - Build Pilot-scale hydrotreater with pilot scale catalyst regeneration
- Test catalysts at Conduct 1,000 trial - Generate corrosion data & develop corrosion model
- Techno-economic Assessment and Lifecycle Modeling (PNNL)

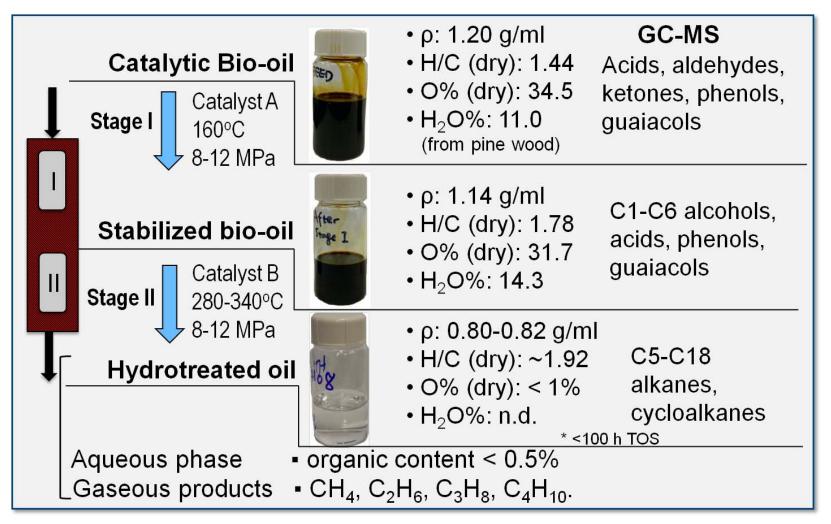
Management Approach:		Progress Metric	Basis of Assumption	
Decision points	Go/ No-Go	Demonstrate non carbon	Need for catalyst	
Hydrotreater operational		non sulfided catalyst	regeneration	
Catalyst demo. lab scale		Demonstrate acceptable product quality	Necessary for commercialization	
Parameter selected 1000 hr run		Demonstrate increased	Necessary for commercialization	
Catalyst regeneration demo.		TOS		
Successful 1,000 hr run		Demonstrate yield	Commercialization	

Battelle

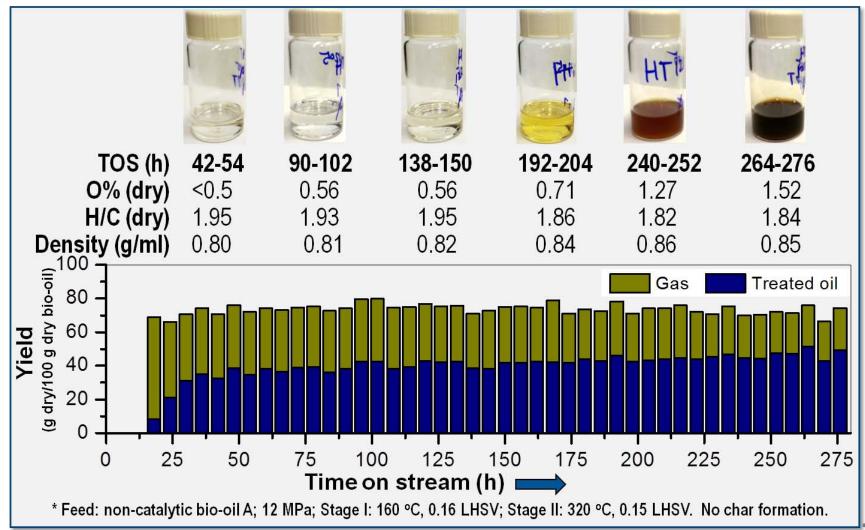

Task C Accomplishment (1): Built a lab scale hydrotreater for rapid catalyst screening

- 30 ml catalyst capacity, T<500 °C, P<15 MPa
- Fast catalyst screening
- One- or two-stage hydrotreating of bio-oil

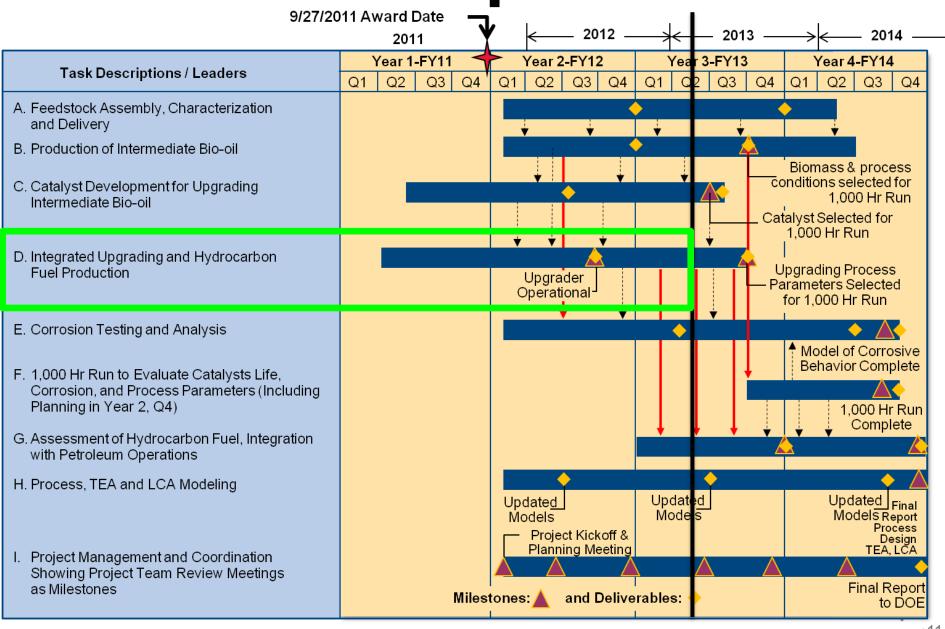
Battelle


Task C Accomplishment (2): Identified novel non-carbon supported non-sulfide catalysts

- Supported metal with excellent hydrogenation activity as the first stage catalyst to stabilize bio-oil and thus inhibit thermochemical charring
- Bifunctional catalysts with a metal function and a solid acid function as the second stage catalyst for fast HDO and cracking.

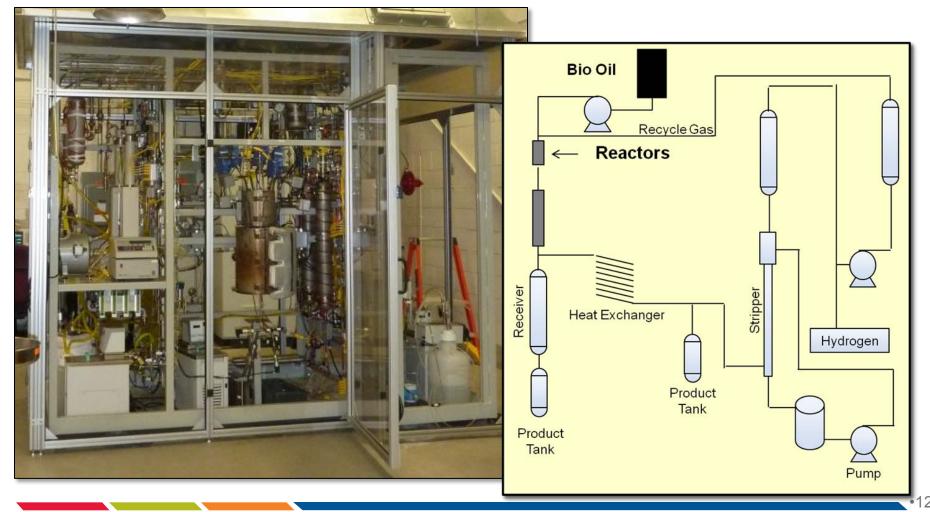

Battelle

Task C Accomplishment (2): Developed novel non-carbon supported non-sulfide catalysts


Battelle

Task C Accomplishment (3): Completed 275 hour time on stream trial at lab scale

Battelle


<u>The Business of Innovation</u>

Battelle

Task D Accomplishment (1): Built & started up a pilot scale hydrotreater with regeneration & hydrogen recycle capabilities

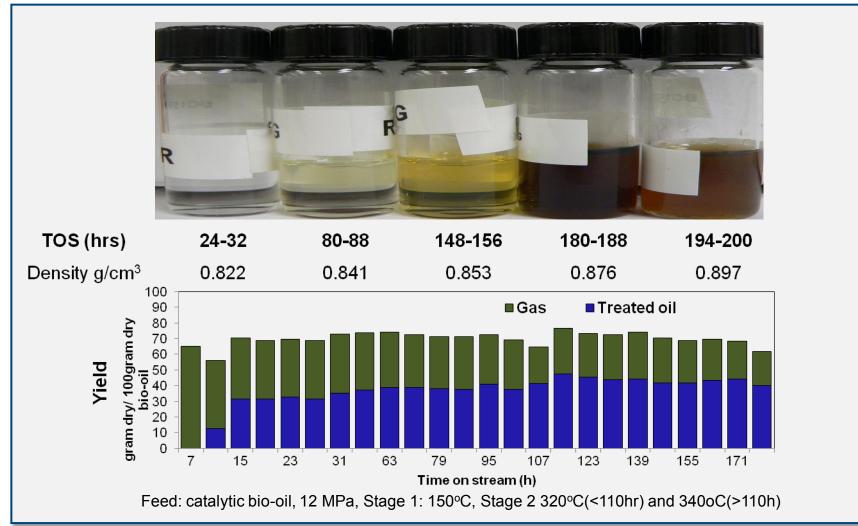
Battelle

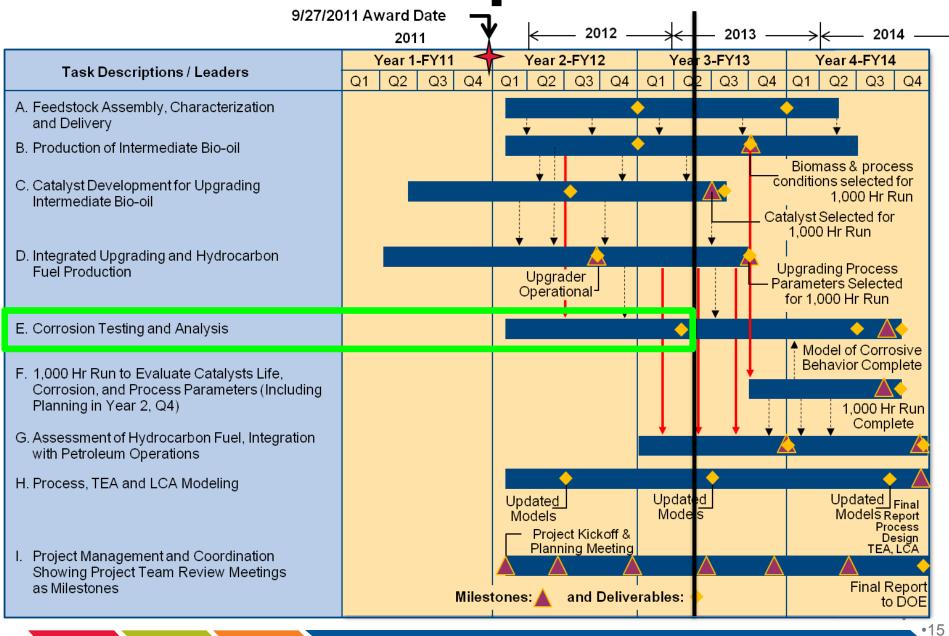
Task D Accomplishment (2): Successfully operating the pilot

Product Properties

hydrotreater and producing fuel product

 Product composition suitable for blending in gasoline, kerosene, diesel RON ~70 Chain length ~ C6 to C14 EPA certification process is being started 				Catalyst A	Catalyst B	Hydrocarbon	Aqueous
				%Wt	%Wt		
		Paraffins		23.49	12.19	1 A A	S00 mL PYREX®
		Total aromatic		12.08	0.17	Fisherbrand* #	
		Total Napththelenes		60.17	84.01		
		Olefins			500mL 300 Fue & 1200	Ht o phust	
		Unidentifie	ed	1.23	0.33	POISTO B TE 100	No. 1397 No. 1397 Trace Car 5/00/12 Trace Car 5/00/12
		Total	_	100	100	Density:	• 0.98
	Refinery example	Battelle Results				0.79 g/ml • Less than 1%	g/ml • 100%
Density (kg/m ³)	0.8-0.9	0.81-0.9	800			water by KF Hydroxyl 	water by KF
BSW (wt%)	0.5	NA (<0.5)	700		Kerosene/diesel	value: 0 (NMR)	-
Total S (wt%)	0.082	<0.005	H 600 H 500 400 300 200	Gasoline		Acidity: 0	
Total N ₂ (wt%)	0.001-0.015	<0.05	100 100 100 100			(NMR)	
TAN (mg KOH/g)	0.5	<0.5	^m 200 100				
Pour Point (°C)	21-36	NA(<<20)	o —	0% 40% 60	% 80% 100%		
Viscosity (cPs)	3-236	NA(1?)		Volume % Boiling	Point		•


•13


Battelle The Business of Innovation

Battelle The Business of Innovation

2 - Technical Accomplishments

Task D Accomplishment (3): Scaled up new catalysts by 10x to pilot scale hydrotreater

Battelle

Task E Accomplishment (1): • Completed low temperature

Low Temperature Tests showed no significant corrosion:

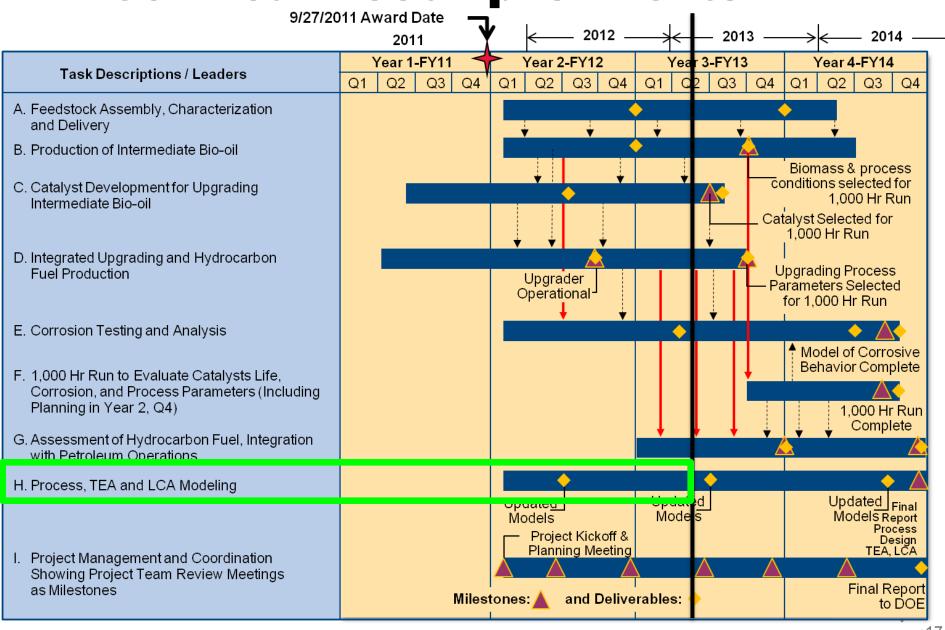
- Materials: 304L, 316L, 904L, 444, and 2205.
- Samples: U bends (with welds & coupons.
- Exposure time: 1,000 hrs
- Temperature: 50°C

Change in Mass in Not Significant

Ŭ		U			
Alloy	Initial Mass(g)	Final mass (g)	%change		
304L	20.713	20.713	.00088		
316L	6.3630	6.3635	.00788		
904L	4.2992	4.2997	.01144		
444	8.0690	8.0690	-0.0001		
2205	8.3365	8.3368	0.00352		

- Completed low temperature SSC and general corrosion trials.
- High temperature testing started.

High Temperature Tests Have Been Started


Test stand being used in high temperature autoclave tests

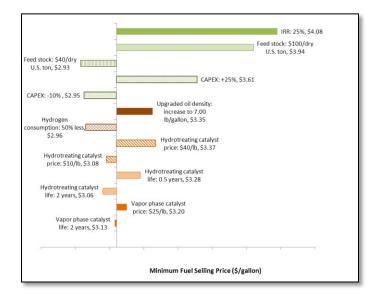
316L 4

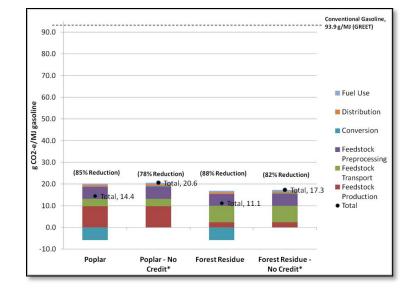
Battelle

The Business of Innovation

Sample coupons for hot tests

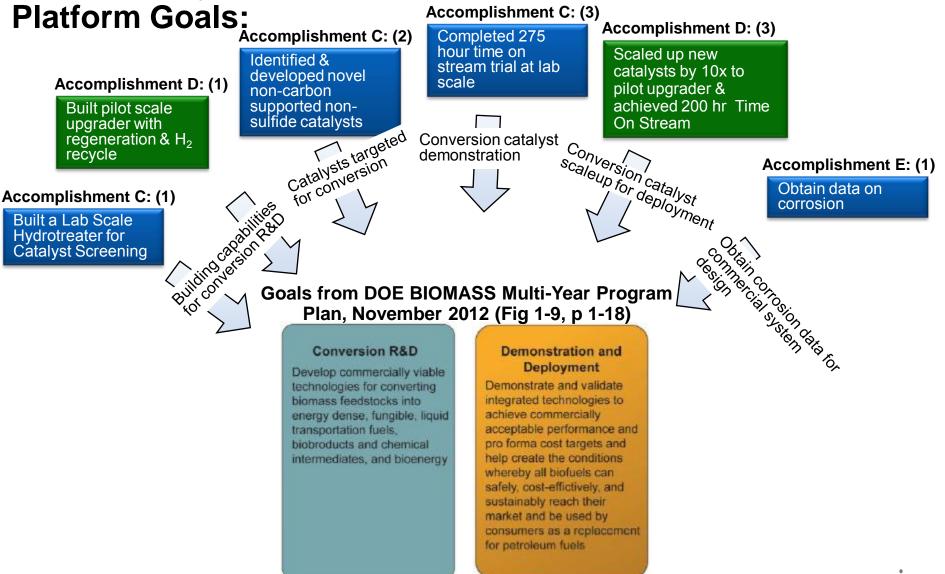
•17


Battelle


Task H Accomplishment (1): • Completed preliminary

- TEA results essentially unchanged
- LCA results estimated GHG reductions still appear to be well within range of cellulosic biofuels

 Completed updated model using hydrotreatment data March 2013



Battelle

3 - Relevance

How the Project Accomplishments Contribute to Accomplishment C: (3)

3 - Relevance

Applications of the Project Outputs:

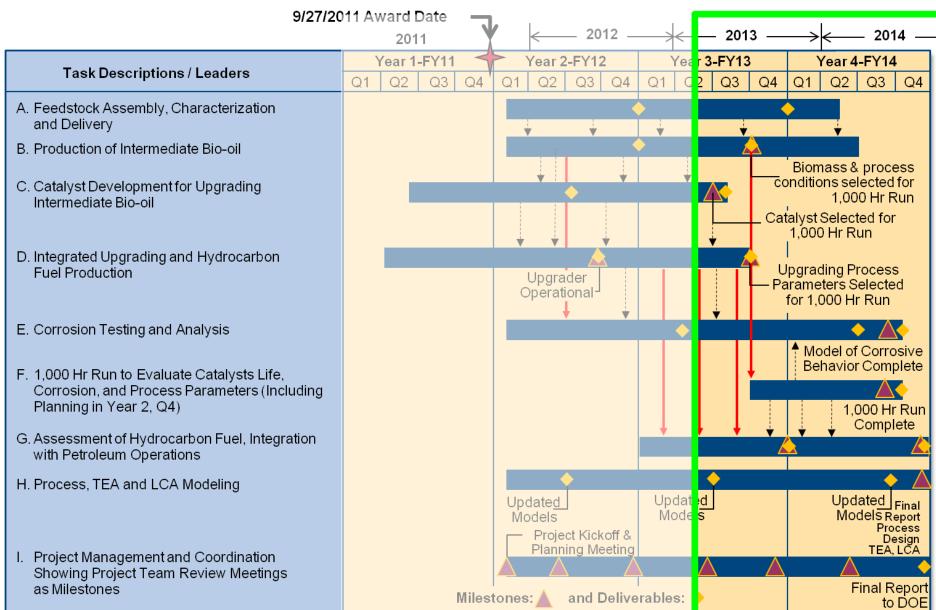
- Battelle is developing small scale (~100 tons/day) biofuels systems based the ex-situ catalytic pyrolysis & hydrotreatment pathway.
- Distributed deployment of a large number of these systems will contribute toward meeting goals & objectives of the Biomass Program
- The technology is expected to be spun off into a separate company FY 2013
- Hydrotreatment catalysts developed under this project will be licensed to the spin-off.

4 - Critical Success Factors

Battelle The Business of Innovation

- Critical success factors
 - Technical: Catalysts need to be able to be regenerated, and need to sustain low coking rates and high space velocities.
 - Market: Product quality has to comply with ASTM gasoline fuel standards to be sold as a blendable fuel
 - Business: Capital and operating costs need to be low enough to generate an acceptable IRR at market fuel prices and biomass costs.
- Potential challenges

Technical


- 1. Demonstration of 1,000 hours time on stream catalyst life
- 2. Demonstration of repeated catalyst regeneration to allow extended system operation

Non-Technical

- 1. Catalyst manufacture at commercially acceptable costs
- 2. Scale-down of hydrotreater at acceptable capital costs
- Upon successful execution of this project
 - A new generation of hydrotreatment catalysts will be available for catalytic pyrolysis bio oil hydrotreatment.
 - Small scale distributed production of blendable biofuels will be enabled.

5. Future Work

Summary

We are making good progress; our project is on schedule, on budget, aligned with the MYPP goals, and relevant to the bioenergy industry:

Relevance

 Project is aligned with the MYPP goals and is relevant to the bioenergy industry because it will enable production of biofuels by small systems which will have the same capital effectiveness as that of large systems.

Approach

 Using an ex situ catalytic pyrolysis process with new non carbon based, non sulfided hydrotreatment catalysts which will be able to be regenerated multiple times to allow long term operation.

Technical accomplishments

 Demonstrated catalyst performance at the lab scale and pilot scale for 275 hrs and 200 hrs time on stream respectively.

Future work

 Preparing for and conducting an extended 1,000 hour trial, continue high temperature corrosion tests, conduct TEA, LCA.

Success factors and challenges

 Ability to regenerate catalyst, achieve long term operation with lower coke production rates.

Technology transfer

- Planning to license the technology to a spin off company.

Additional Slides

•24

Responses to Previous Reviewers' Comments

 If yours is an on-going project that was reviewed previously, address 1-3 significant questions/criticisms from the previous reviewers' comments (refer to the <u>2011</u> <u>reviewer comments</u> if needed)

Note: This slide is for the use of the Peer Reviewers only – it is not to be presented as part of your oral presentation. These Additional Slides will be included in the copy of your presentation that will be made available to the Reviewers.

(Not a template slide – for information purposes only)

- The following slides are to be included in your submission for Peer Evaluation purposes, but <u>will</u> <u>not be part of your oral presentation</u>
- You may refer to them during the Q&A period if they are helpful to you in explaining certain points

Responses to Previous Reviewers' Comments

 If yours is an on-going project that was reviewed previously, address 1-3 significant questions/criticisms from the previous reviewers' comments

Note: This slide is for the use of the Peer Reviewers only – it is not to be presented as part of your oral presentation. These Additional Slides will be included in the copy of your presentation that will be made available to the Reviewers.

Publications and Presentations

• List any publications and presentations that have resulted from work on this project. Use at least 12 point font.

Note: This slide is for the use of the Peer Reviewers only – it is not to be presented as part of your oral presentation. These Additional Slides will be included in the copy of your presentation that will be made available to the Reviewers.