

Efficient Use of Algal Biomass Residues for Biopower Production with Nutrient Recycle

May 20, 2013 Algae Peer Review

Eric Jarvis, PI (NREL) Nick Nagle, Co-PI (NREL) Ryan Davis (NREL) Craig Frear (WSU)

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Goal Statement

- The goal of this project is to advance the economic viability of algal biofuels by filling knowledge gaps on the conversion of algal residues to biogas/biopower via Anaerobic Digestion (AD)
- Specific objectives include:
 - <u>Optimize biogas production</u> from spent microalgae to increase potential levels of biopower production.
 - Understand fate of nitrogen and phosphorous and <u>test nutrient</u> <u>recycle</u> to support algal growth.
 - <u>Generate meaningful yield/retention time data</u> using scaled-up reactors and assess the impacts on the process economics and life cycle analysis.

Overview

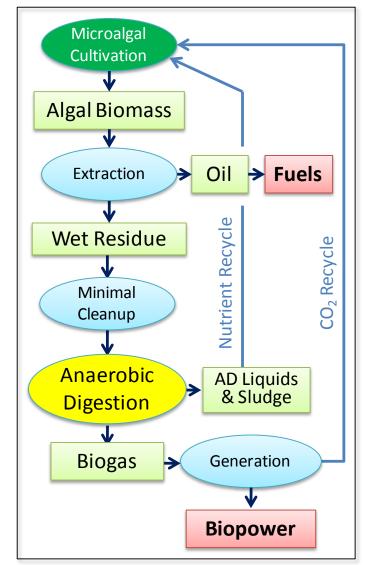
Timeline

Start: Oct. 1, 2010 End: June 30, 2013 95% Complete

Barriers

- Im-F. Cost of Production
- Bt-K. Biological Process Integration
- Ft-B. Sustainable Production
- Ft-N. Algal Feedstock Processing

Budget


Total:\$900,000FY11:\$219,000FY12:\$447,000FY13:\$234,000No ARRA Funding

Partners

Collaboration (subcontract) with Washington State University --Dr. Shulin Chen and Dr. Craig Frear Interactions with Dr. Ed Frank, Argonne National Laboratory

Project Overview

- Concept of using AD to produce biogas/biopower from whole algae or algal residues has been around since the 1950's (Golueke, Oswald, Benemann)
- For lipid pathway, need to gain value from 50%+ of biomass remaining after extraction
- AD provides opportunity to convert most of remaining fixed carbon to biogas (mostly methane and CO₂) for power generation
- Potentially allows recycle of carbon and inorganic nutrients (N and P)
- The purpose of this project is to provide real-world data on the feasibility of this concept (yields, loading rates, retention times, inhibitors, N and P recycle)

1 - Approach

Project organized into five tasks:

- A. Generation/acquisition of microalgal biomass and lipid extraction
- B. High-throughput testing for biogas optimization (WSU)
 - Biochemical Methane Potential (BMP) experiments
 - Explore species, AD inoculum, organic loading rate, etc.
- C. Scale-up to multi-liter AD reactors (WSU)
- D. Characterize AD effluent (N and P), explore pre-treatments, test ability to recycle nutrients for phototrophic algal growth
- E. Test impacts of AD data on algal biofuels techno-economic (TE) and life cycle analyses (LCA)

Six Milestones, including <u>key metrics</u> such as:

- Continuous-flow AD reactor runs demonstrating stable biogas production over ≥30 days with ≥50% conversion of incoming volatile organic carbon
- Demonstrate ≥20% replacement of chemical nitrogen with <10% impact on growth rate

Task A: Feedstock Development

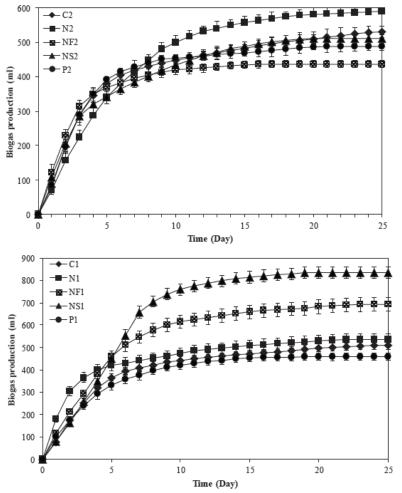
- Goal to test genetically diverse species to ensure broadly applicable conclusions
 - Eustigmatophyte: *Nannochloropsis* sp. (Seambiotic)
 - Green alga: Chlorella vulgaris UTEX 395
 (NREL hanging bags)
 - Diatom: *Phaeodactylum tricornutum* CCMP632 (NREL greenhouse ponds)
- Based on feedback from previous Peer Review, expanded to two additional industrial strains available in large quantity (extracted and nonextracted)
 - Nannochloropsis salina from Solix Biosystems Coyote Gulch facility (CO)
 - Nannofrustulum sp. from Cellana (HI)

Credit: Solix (Coyote Gulch facility)

Task A ... Feedstocks Studied

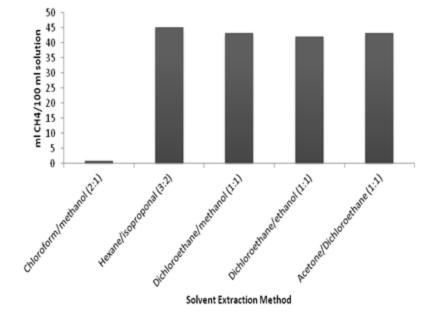
- Extracted oil to mimic process-derived algal residues (LEA)
- All algal biomass characterized for:
 - Elemental analysis
 - Total solids, volatile solids, fixed solids
 - Macromolecular components—lipid, protein, carbohydrate

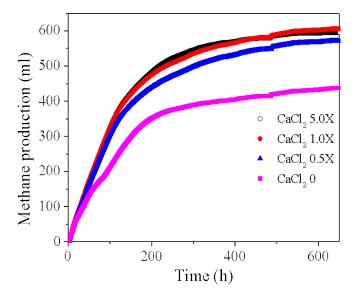
Species	Source	Scale	Extraction	Lipid	Protein	Carbs
Nannochloropsis sp.	Seambiotic	kg	N1 – Whole cells N2 – Hexane:IPA	10.6 3.0	34.0 32.7	7.6 9.6
Chlorella vulgaris	NREL	100 g	C1 – Whole cells C2 – Hexane:IPA	9.8 2.8	35.1 39.0	16.9 12.2
Phaeodactylum tricornutum	NREL	100 g	P1 – Whole cells P2 – Hexane:IPA	7.6 6.1	26.5 32.5	19.0 16.1
Nanofrustulum sp.	Cellana	kg	NF1 – Whole cells NF2 – Methyl pentane	13.0 2.6	12.5 8.7	9.0 11.0
Nannochloropsis salina	Solix	kg	NS1 – Whole cells NS2 – Hexane	37.2 11.8	17.2 26.7	11.5 17.0


Task B: AD Optimization (BMP Assays)

- Biochemical Methane Potential (BMP) assays conducted in16cell automated system, 250 mL flasks, 35°C, 100 rpm mixing, online gas monitoring, ~3 week runs, triplicates
- Inoculum from anaerobic sludge from a waste water treatment plant or a dairy manure digester (preferred)
- Tested many parameters including:
 - Algal species
 - Lipid extracted vs. whole cells
 - Extraction solvent type
 - Pretreatments
 - Inoculum source
 - Solids loading
 - Inoculum:substrate ratio

Task B ... Highlights of BMP Studies

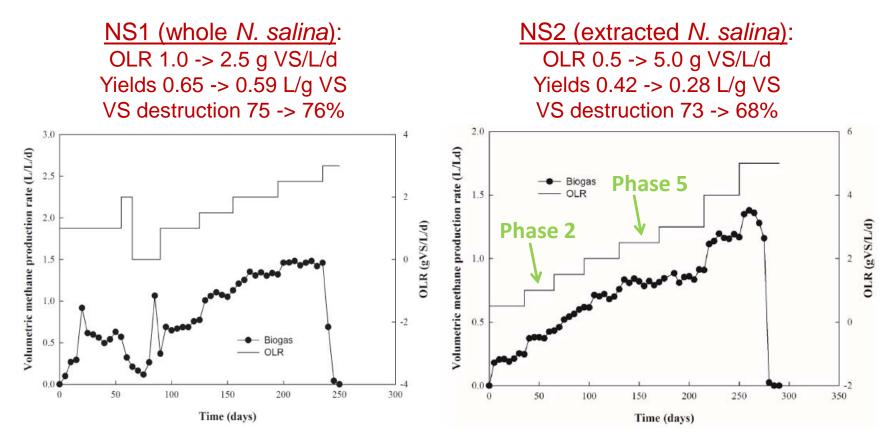

- Conditions were found under which all ten feedstocks digested well
- Lower loadings (higher Inoculum:Substrate ratio) gave better results



- Overall yields were good, ranging from 0.3-0.6 L CH_4 /g VS fed (consistent with literature numbers)
- Best yields were with whole biomass (*e.g.*, 0.38 vs. 0.56 L/g for *N. salina*)
- Yields correlated to lipid content
- Volatile solids reduction 60-78%
- Max rates (initial slopes) quite good
- 60-75% of biogas consisted of methane
- 6-14 days to 95% digestion
- No serious issues of ammonia toxicity, C/N ratios, or cell wall recalcitrance

Task B ... Other Findings

 Methanogenesis was inhibited in Bligh-Dyer extracted material (chloroform carryover even after extensive drying)


- Calcium dosing enabled higher methane productivity
- Thought to be due to prevention of Long Chain Fatty Acid (LCFA) inhibition on cell surfaces

Task C: AD Scale-Up

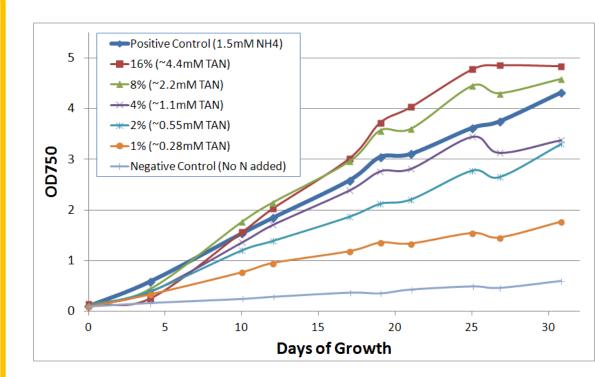
- Critical for industrial relevancy; continuous reactor conditions quite different from BMPs
- Sequencing Batch Reactors (WSU)
- 5 L scale, 35°C, 20 day retention time, 0.2 L/day flow rate, mixed 10/120 min, OLR 0.5-5 g VS/L/day
- Used *N. salina* feedstock from Solix, compared extracted and nonextracted (NS1, NS2)
- Following initial failures, success with slow ramp-up of OLR

Task C ... Scale-Up Results

- Long periods of stable performance
- Biogas yields and solids reduction consistent with BMPs
- Destruction of volatile solids exceeded Milestone target of >50%

Task D: Nutrient Recycle Testing

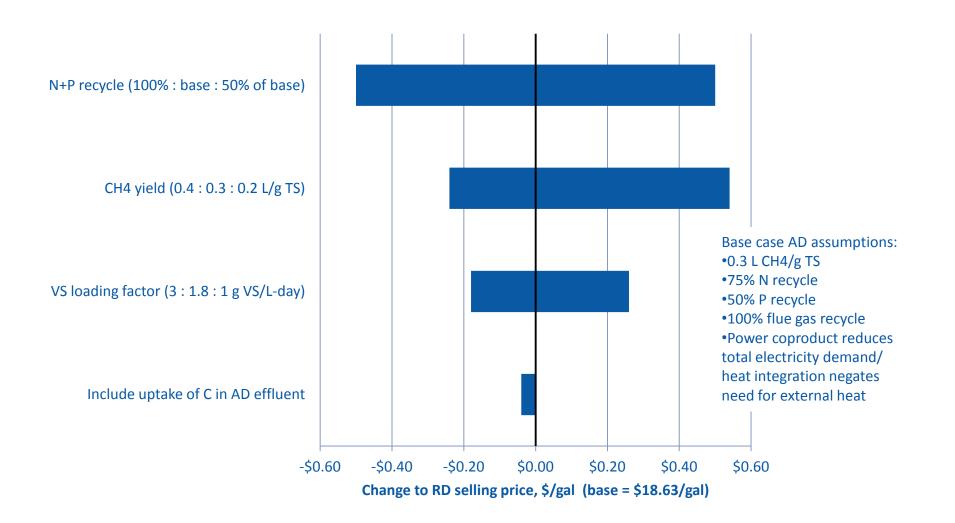
Effluent Characterization


- Utilizing Phase 2 and Phase 5 from NS2 (Solix's lipid-extracted *N. salina*) continuous digester
- Separated into liquid and solid fractions by centrifugation
- Full elemental, Total Ammonia Nitrogen (TAN) and Total Kjeldahl Nitrogen (TKN) analyses

	Feed Solids Content g/L	Feed Nitrogen Content g/L	Feed Phosphorus Content g/L	Input N Recovered in Liquid Effluent as TAN %	Input N Recovered in Liquid Effluent as TKN %	Input P Recovered In Liquid Effluent as TP %
Phase 2	22	1.2	0.24	32	57	40
Phase 5	56	3.1	0.62	30	81	26

Task D: Nutrient Recycle Testing

Growth Assays for Nutrient Recycle


- *N. salina* CCMP1776 used for studies (same strain grown by Solix)
- Strain utilizes NH₄ well, but higher than 1.5-2.0 mM inhibitory
- Growth studies in shake flasks, some 1 L Roux bottle studies
- Toxicity of liquid effluent not a problem
- Opacity not a problem
- Able to completely replace chemical NH₄ with effluent with no negative impact on growth (surpassing Milestone target of ≥20% replacement with <10% growth impact)

Task E: Techno-Economic and Life Cycle Analysis

*Basis = NREL TEA model, 13 g/m²/d, 25% oil content (http://www.nrel.gov/docs/fy12osti/55431.pdf)

*Basis = NREL TEA model, 13 g/m²/d, 25% oil content (http://www.nrel.gov/docs/fy12osti/55431.pdf)

3 - Relevance

- Economic viability of fuels from algae requires gaining value from the remaining 50+% of the biomass stream after lipid extraction
- AD for biogas/biopower is a generic process, and we have helped to demonstrate applicability across disparate, industrially-relevant algal species
- Optimization of AD lowers overall cost of producing algal biofuels
- We have demonstrated yields and retention times to help justify current assumptions in cost modeling

3 - Relevance, cont...

- Nitrogen recycle has been shown to be feasible
- Helps to address fertilizer, energy, and CO₂ inputs for algal cultivation
- Publication of results will provide important data to the algal biofuels industry and will help provide confidence to industry around this process component
- This work provides a basis for comparison to competing residue utilization pathways

4 - Critical Success Factors

Success Factors:

- For biopower to become a commercially viable co-product of algal biofuels production, three factors are important:
 - 1) Sufficient yield of biogas (overcome cell wall recalcitrance and inhibitors such as ammonia) demonstrated for five species (no issues of recalcitrance, ammonia inhibition)
 - 2) Moderate capital costs (primarily a factor of retention time) *moderate retention times demonstrated*
 - 3) Efficient recycle of nitrogen and phosphorous (bioavailability) effluent can replace chemical nitrogen input

Challenges:

- Co-product (biogas/biopower) value is low (but infinitely scalable)
- Other co-product pathways may be more attractive (but potential synergies between AD and SABC, HTL, etc.)
- Every algal feedstock will be different (but this work provides optimism for AD of any feedstock)

5 - Future Work

Work planned through end of project:

- 1) Wrap up nutrient recycle experimentation
- 2) Further Techno-Economic Analysis, sensitivity studies (Milestone)
- 3) Interact with Argonne regarding Life Cycle Analysis
- 4) Prepare Final Report

Possible follow-on work:

- 1) Interface with alternative pathways
 - a) Leverage SABC project (feedstocks, fermentation residues)
 - b) HTL process residues
- 2) Investigate other industrial algal feedstocks, possible additional challenges (solvent carryover, salt levels, etc.)
- 3) Explore mobilization of non-ammonia nitrogen in effluent

Summary

Relevance

• Commercial success of algal biofuels will require co-products of sufficient value and market size -- AD for biopower holds promise

Approach

 Biogas production was optimized for five species, one feedstock was scaled up, nutrient recycle was demonstrated, and results are being used to inform TE and LCA models

Technical accomplishments

- Many of the anticipated challenges were not encountered; AD of algal residues was quite successful on the five species tested
- Scale-up demonstrated long-term, stable performance and good biogas yields, supporting moderate cost assumptions

Success factors and challenges

 Need to integrate with potentially more lucrative co-product pathways

Summary

Technology transfer and future work

- Data are being freely shared to benefit the entire algal biofuels community
 - Algae Summit presentation, at least two more planned
 - Three journal articles in development, at least one more planned

<u>Thank you to</u>....

- The BETO Algae Team (Dan Fishman, Joyce Yang, Christine English, Christy Sterner, Kristen Johnson)
- NREL: Ryan Davis, Lieve Laurens, Nick Sweeney, Will Long, Stefanie Van Wychen, Phil Pienkos, and Adam Bratis
- WSU: Craig Frear, Baisuo Zhao, Jingwei Ma, Quanbao Zhao, and Shulin Chen
- ANL: Ed Frank

Additional Slides

Responses to Previous Reviewers' Comments

Reviewers' Comments	Response
The reviewers suggested that we not spend time and resources at NREL generating algal biomass, but rather obtain it from industrial sources.	The NREL production of <i>C. vulgaris</i> and <i>P. tricornutum</i> added diversity to the feedstocks tested. However, this was good advice, and we reached out to Cellana and Solix for additional feedstocks, which proved very valuable to the project.
One reviewer was concerned that we had not sufficiently accounted for previous work in the literature on AD of microalgae.	There are a fair number of studies in the literature on AD of microalgae. However, in general those studies are lacking in process relevancy (for example, looking at intact rather than lipid-extracted algae). The broad scope of species, the time scale of our continuous digestions, our nutrient recycle studies, and our focus on application to techno-economic modeling set this project apart from previous work.
One reviewer asserted that "AD of defatted microalgae biomass won't produce much methane (relative to CO ₂) unless you add in added carbon."	This actually highlights one of the valuable contributions of this project, in that we were able to demonstrate quite good methane yields from all five defatted algae types tested. The lowest fraction of methane in biogas observed was 59%, which is still quite acceptable. This is only one of the anticipated problems that either was not encountered or was overcome through careful optimization.

Publications and Presentations

Manuscripts in preparation:

- 1) Zhao, B., Ma, J., Zhao, Q., Laurens, L., Jarvis, E., Frear, C. Anaerobic digestion of whole and lipid-extracted microalgae from five industrial strains—Determination of important methane and nutrient information. Applied Energy.
- 2) Ma, J., Zhao, Q., Laurens, L., Jarvis, E., Frear, C. Continuous anaerobic digestion of whole cell and lipid-extracted microalgae biomass in sequencing batch reactors—Methane and nutrient production with microbial population shifts. Bioresource Technology.
- 3) Zhao, Q., Yu, L., Ma, J., Laurens, L., Jarvis, E., Frear, C. Kinetic model for long-chain fatty acid (LCFA) degradation in microalgae, both whole cell and lipid extracted. Bioresource Technology.

Conference Presentations:

- 1) Frear, C., Zhao, B., Zhao, Q., Ma, J., Pienkos, P., Laurens, L., Sweeney, N., Davis, R., Nagle, N., Jarvis, E. 2012. Anaerobic digestion of algal biomass residues with nutrient recycle. Algae Biomass Summit, September 24th-27th, 2012, Denver, Colorado, USA.
- Frear, C., Zhao, B., Zhao, Q., Ma, J., Pienkos, P., Laurens, L., Sweeney, N., Davis, R., Nagle, N., Jarvis, E. 2013. Anaerobic Digestion of Whole and Lipid-Extracted Algal Biomass from Four Industrial Strains--Determination of Important Methane and Nutrient Information. ASABE National Conference, July 22th-24th, 2013, Kansas City, MO, USA.
- Ma, J., Zhao, Q., Laurens, L., Jarvis E., Nagle, N., Frear, C. Anaerobic digestion of whole and lipid-extracted algal biomass—Continuous digestion in sequencing batch reactors. Algae Biomass Summit, September 30th-October 3rd, 2013, Orlando FL, USA (submitted).

Supporting Data