

9.5.1.9: Hydrocyclone Separation of Targeted Biochemical Intermediates and Products

May 20, 2013

Department of Energy Bioenergy Platform - Algae Technology Area

Richard Brotzman

Argonne National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goals

- Evaluate hydrocyclone separation to harvest algal lipids
 - Employing turbulent mixing with concomitant heat transfer
 - Nanostructured adsorbent materials based on magnetic separations and/or flotation
- Couple hydrocyclone with nanostructured adsorbents to yield efficient separation process
- Technology spans between biomass processes
 - Applicable to targeted products and intermediates
 - Enables investigation of quality requirements of intermediates and products

Abbreviations

- IQ: installation qualification
- OQ: operation qualification
- PQ: process qualification
- NP: nanoparticle
- NA: nanostructured adsorbent
- U/F: underflow (hydrocyclone)
- O/F: overflow (hydrocyclone)
- L: hydrocyclone length
- D: diameter (NP)

Quad Chart Overview

Timeline

- Project start date: Oct 1, 2012
- Project end date: Sept 30, 2015
- Percent complete: 55% (FY2013)

Budget

- Total project funding
 - DOE: \$ 250,000
 - Contractor: \$ 0
- Funding received in FY12: \$ 0
- Funding for FY13: \$ 250,000
- ARRA Funding: \$ 0

Barriers

- Hydrocyclone selection, IQ, OQ, PQ
- Nanostructured adsorbents
- Acquisition of Algae

Partners

- George Oyler University of Nebraska / Synaptic Research
- Leveraged activities
 - PI experience with hydrocyclones
 - BETO project to adsorb sugars
 - ARPA-E nanostructured magnets
 - LDRD magnetic nanostructures

Project Overview

- Separation process combines two innovative technologies
 - Hydrocyclone: separates components in fluid mixture density and/or size
 - Nanostructured adsorbents (NA): harvest lipid

Program tasks

- Establish baseline understanding of hydrocyclone separation of lipid products from algal growth media
- Develop separation process metrics based on lipid products from algal growth media
- Optimize hydrocyclone separation of algal growth media. Test impact of nanostructured adsorbent materials
- Demonstrate feasibility of hydrocyclone separation of lipids from algal growth media. Develop techno-economic model of hydrocyclone separation.

Metrics

- Dewatering algae: % concentration
- Harvest lipid: % harvested and % concentration
- Process cost

1.1 Hydrocyclone Separation Approach

Hydrocyclone unit

- Classification of components in fluid mixture density and/or size
- Continuous-flow dewatering
- Replaces: centrifugation, filtration, and washing

Hydrocyclone structure

- Cylindrical-conical body
- Conical base
- Liquid is fed tangentially at the top
- Two opposite axial exits
 - top exit (overflow or vortex) a tube extends into cylindrical section – lighter or finer fraction
 - Bottom exit (underflow) denser or coarser fraction

Unique: 3-dimensional vortex fluid motion

- Tangential (m/s), axial (m/s), and radial velocity (1 0.1 m/s)
- Low pressure in center of unit

1.2 Adsorbent Separation Approach

- Unique synthesis process: magnetic nanoparticles (NP)
 - X Colloidal method
 - Solid-state reaction
- Assembly of magnetic NP
 - Chemically bond NP using polymer chains
 - Forms elastic network like a rubber band
- Unique: surface treatment on NP to adsorbs lipids
 - Heterogeneous gas phase process
 - No process solvents
- Harvest lipids from the algal strain: Chlorella sorokiniana UTEX 1230
 - Magnetic
 - Flotation

2. Technical Progress: Schedule

Task, Milestone, Deliverable	Title - Tasks, Subtasks, Milestones, Deliverables including Go No/Go Decision Pts	Planned Completion Date	% Actual Completion
Α	Hydrocyclone	31-Dec-12	100
A.1	Baseline	1-Dec-12	100
A.2	Fabricate Test System	31-Dec-12	100
A ML 1	Test System Complete	31-Dec-12	100
В	Separation Process Metrics	31-Mar-13	100
B ML 1	Separation Process - 50%	31-Mar-13	85
С	Separation of Algal Growth Media / Adsorbents	31-Jul-13	35
C ML 1	Optimized Process	31-Jul-13	
D	Feasibilityof Hydrocyclone/Adsorbent Process	30-Sep-13	
D.1	Turnover Cycle Number	30-Sep-13	
D.2	Techno-economic model	30-Sep-13	
D ML 1	Technology Feasibility	30-Sep-13	

2.A.1 Hydrocyclone Accomplishments

- Hydrocyclone: ¹ 5 to 10 GPM; top diameter of 1", adjustable length 4-8"
 - Feeds of 1- and 0.75-L/min separation efficiencies for algae solids of 78% and 37% ²
- Process flow diagram

¹ ChemIndustrial Systems, Inc.

² Towler G & Sinnott R (2008) Chemical Engineering Design: Principles, Practice and Economics of Plant Process Design (Elsevier, Burlington, MA).

2.A.2 Fabricate Hydrocyclone Test System

Hydrocyclone – IQ and OQ completed

2.B Separation Process Metrics – PQ Completed

- O/F stream pressure applied by restriction valve
- Residence time is also controlled by hydrocyclone volume

2.B Separation Process Metrics – Residence Time and Process Space

2.B Algal Dewatering – Preliminary Data

Turbulent flow: $R_e = 38,900$ for 14.5 LPM and 54,600 for 20.4 LPM

2.C Adsorbent Accomplishments: NP Synthesis

- Superparamagnetic Fe₂Co
 - X Colloidal:1

D ~10-nm; iron chloride and cobalt acetate by polyol reduction at 130°C in ethylene glycol using sodium hydroxide and $H_2PtCl_6•6H_2O$ (~ 2.4×10-5 mol/L) \$15,000/kg

- Solid-state reaction of Fe(NO₃)₃ and Co(NO₃)₂
 Fe₂Co cylinders (D ~10-nm, L ~30-nm) \$350/kg
- \bullet Al₂O₃ NP

(D ~30-nm, spheroidal)

¹ Adv. Mater. (2006) **18**: 3154-3159.

2.C Adsorbent: Network and Surface Treatment

- Nanostructured adsorbent (NA) network
 - Chemically bond NP using polymer chains bi-functional coupling
 - 1,8-bis(triethoxysilyl)octane
 - bis(3-triethoxysilylpropyl)poly-ethylene oxide.
 - Forms elastic network junction functionality ~ 2.2 to 2.5
- Nanoparticle (NP) surface treatment
 - Heterogeneous vapor-phase polymerization hydrocarbon adsorption
 - Lyophilic: octyl (C₈), octadecyl (C₁₈), phenyl (-C₆H₅)
 - Hydrophilic: hydroxyl (-OH), amino (-NH₂), carboxyl (-COOH)
 - ST characterized by TGA, MAS, and CP MAS solid-state NMR techniques

Pilot process

R. Brotzman, "Industrial Scale Processes for Nanomaterials," Presented at Northwestern, (May 2005).

2.D Feasibility of Hydrocyclone / Adsorbent Process: Next Steps

- Complete dewatering of algal growth medium determine process conditions to separate algae
 - Metric: > 10%
- Determine effectiveness of hydrocyclone process to harvest lipid
 - Metric: > 50% separation
- Determine effectiveness of hydrocyclone / adsorbent process to harvest lipid – flotation versus magnetic flow separation
 - Metric: > 98% separation
- Complete techno-economic analysis

3. Relevance

Al-B Algal Fuel Production

M.8.1 Algal feedstock production

 M.8.1.1 Development of technically viable, sustainable and cost effective algae production

M.8.2 Algal conversion technologies

- M.8.2.1 Development of technically viable, sustainable and cost effective fuel production from algae
- Applications of expected outputs
 - Dewatering algal growth medium
 - Harvesting algal lipids

4. Critical Success (Risk) Factors

Risk	Mitigation Approach		
Dewatering: Hydrocyclone separation of algae from growth medium	 Explore entire process space – multiple passes Explore laminar and turbulent mixing Explore NA 		
NA become entangled with algae cells	Apply turbulent mixingIncrease residence time in hydrocycloneFlotation separation		
Separation % yield or % concentration low	Multiple passes through hydrocycloneModify adsorbents		
Process cost	Flotation separationSingle pass – multistage hydrocyclone		

Future Work

- Through September 30, 2013
 - Complete algae medium dewatering
 - Complete flow specification for flotation/magnetic separation
 - Complete adsorbed product separation
 - Complete techno-economic analysis
- Through September 30, 2014
 - Integrate 2013 separation performance with LCA to establish cost/performance goals
 - Optimize flow and adsorption technology, and incorporate lipid recovery and adsorbent recycling strategies to achieve cost/performance goals
 - Leverage magnetic nanostructure programs to determine adsorbent scale-up metrics
 - Go/No-Go: cost/performance of hydrocyclone/adsorbent versus conventional algal separation processing (coagulation-flocculation-centrifuge-lipid recovery)

Summary

- The objectives are relevant to BETO's Algae Technology Area by exploring novel methods to dewater algae growth media and harvesting algal lipids
- The approach is effective by accessing a large flow separation process space which may be coupled with NA
- The work has many technical accomplishments mapping complete hydrocyclone process space, NP synthesis, NP surface treatment, and adsorbent network formation
- The work has leveraged technology from ARPA-E, Argonne LDRD, and BETO programs
- Critical success (risk) factors were identified along with mitigation strategies
- Scale-up processing methodologies identified

Additional Slides

- This is a new project
- No prior comments are available

