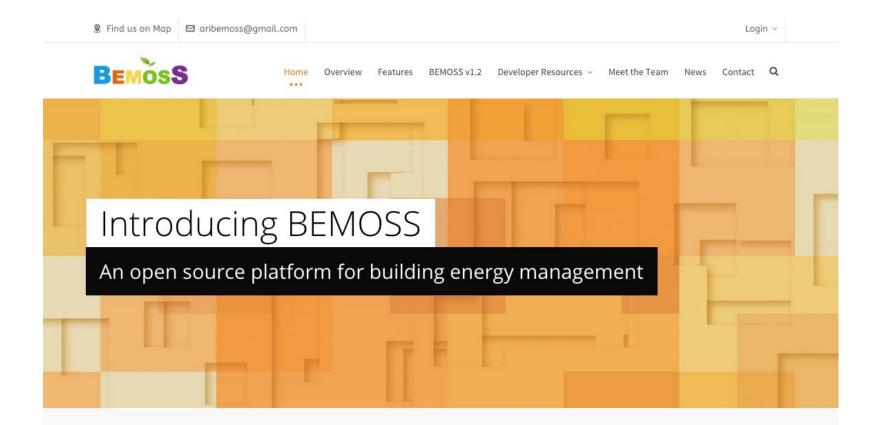
Building Energy Management Open-Source Software (BEMOSS)


2016 Building Technologies Office Peer Review

ENERGY Energy Efficiency & Renewable Energy

Saifur Rahman (<u>srahman@vt.edu</u>) Virginia Tech

BEMOSS.org

The US Department of Energy has awarded the Virginia Polytechnic and State University Advanced Research Institute nearly \$2 million to do research and development of its Building Energy Management Open Source Software (BEMOSS) for small and medium-sized commercial buildings.

Project Summary

Timeline:

- Start date: November 1, 2013
- Planned end date: March 31, 2017
- Key Milestones
- 1. Target release BEMOSS v2.0 on Github 03/31/2016
- 2. Target release BEMOSS v3.0 on Github 03/31/2017

Budget:

Total Project \$ to Date:

- DOE: \$1,206,348
- Cost Share: \$69,861

Total Project \$:

- DOE: \$1,985,795
- Cost Share: \$69,884

Key Partners:

Arlington County, VA

Danfoss Corporation

Virginia Tech Foundation

Project Outcome:

The **Building Energy Management Open Source Software (BEMOSS)** platform, along with the user interface for three plug-and-play compatible controllers –HVAC, lighting and plug loads, that can help small- and mediumsized commercial buildings to improve energy efficiency and facilitate their demand response implementation. **Problem Statement**: Lack of inexpensive open-source building energy management (BEM) software solutions that allow seamless integration with device controllers (HVAC, lighting and plug loads) from various manufacturers.

Target Market and Audience: Small- and medium-sized commercial buildings

Impact of Project:

- 1. <u>Project endpoint</u>: Make available an open-source and cost-effective solution for building energy management.
- 2. Project outcomes:
 - a. Near-term outcomes (1yr): A few pilot sites demonstrating how BEMOSS can provide energy savings and peak demand reductions in buildings; and participation from software developers to build more App.
 - b. Intermediate outcomes: (1-3yr): Growing number of BEMOSS deployment in buildings; and founding of start-up company(ies) which commercializes BEMOSS and provides maintenance services.
 - c. Long-term outcomes(3yr+): Widespread use of BEMOSS in small- and medium-sized commercial buildings.

Approach:

- Phase 1: BEMOSS software development (2014)
- Phase 2: Lab testing and software enhancement (2015)
- Phase 3: Demonstration in buildings (2016)

Key Issues: BEMOSS addresses plug & play and interoperability issues of selected HVAC, lighting and plug load controllers for energy savings and peak demand reduction in small- and medium-sized commercial buildings.

Distinctive Characteristics: Open source software that can provide low-cost deployment of building energy management, allowing energy savings and facilitating demand response implementation.

BEMOSS is Built upon Open-Source Software

VOLTTRON[™] was used as a platform to host our BEMOSS solution. It is open-source and not hardware specific.

Other software used:

Energy Efficiency & Renewable Energy

BEMOSS Interoperability

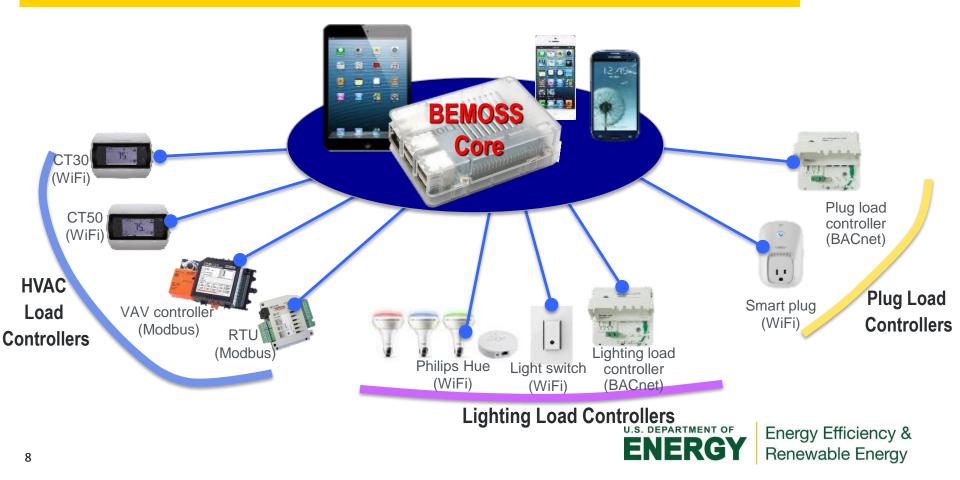
Communication Technologies

- Ethernet (IEEE 802.3)
- □ Serial Interface (RS-485)
- □ ZigBee (IEEE 802.15.4)
- □ WiFi (IEEE 802.11)

Data Exchange Protocols

- □ BACnet (IP and MS/TP)
- □ Modbus (RTU and TCP)
- U Web (e.g., XML, JSON, RSS/Atom)
- ZigBee API
- □ Smart Energy (SE)

OpenADR (Open Automated Demand Response)



BEMOSS Plug & Play

With BEMOSS discovery agent, we know:

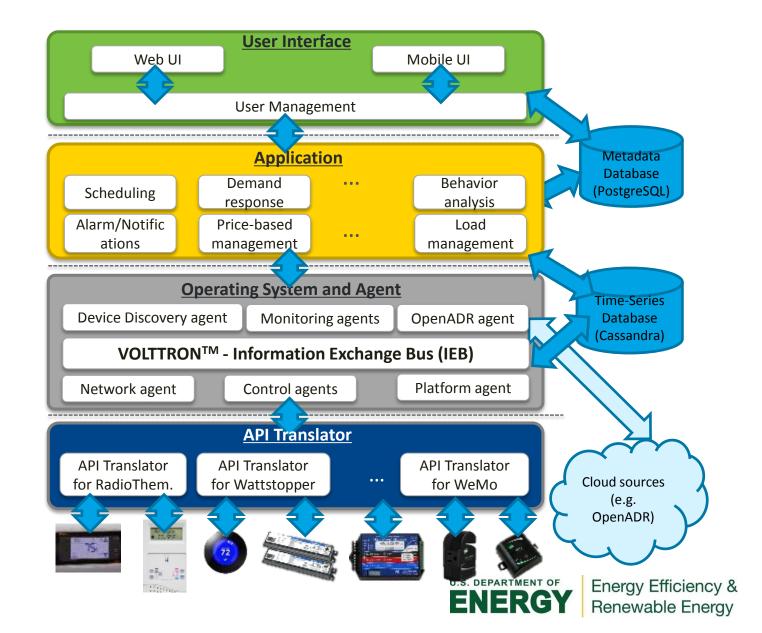
- The device is present in the building.
- Device model number, e.g., 3M-50.
- What the device can do, e.g., monitor temperature and adjust set point.

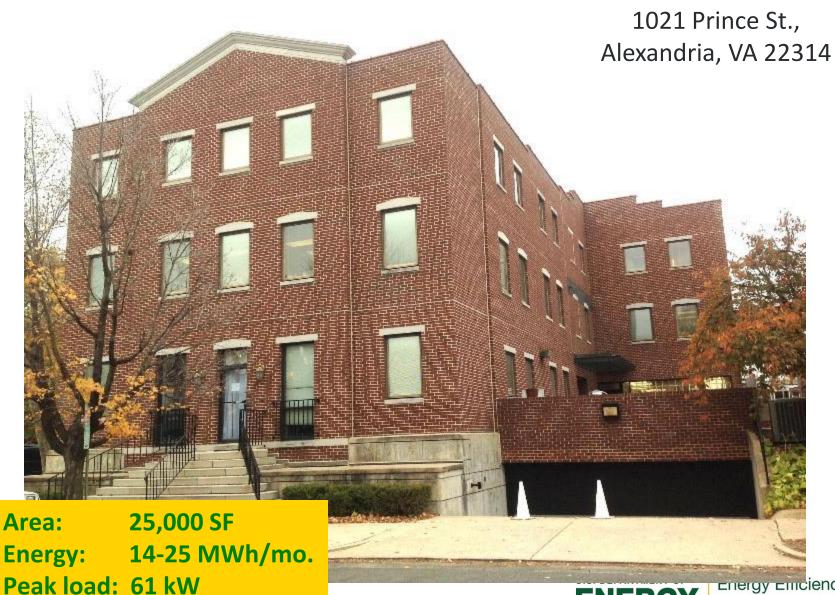
BEMOSS automatically discovers new load controllers deployed in a building

BEMOSS on Various Embedded Devices

eboal

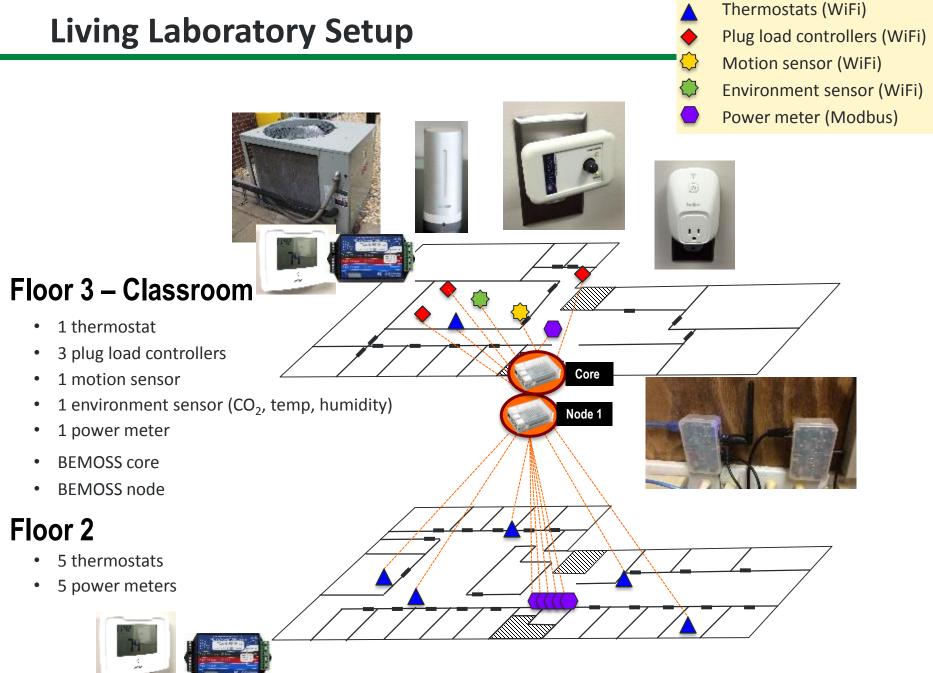
CPU: Arm Cortex A15x4 @2GHz, A7x4 @1.3GHz RAM: 2 GB Price: \$138 Size: 5.8"x5.6"


CPU: Arm Cortex A15x4 @2GHz, A7x4 @1.4GHz RAM: 2 GB Price: \$74 Size: 3.3"x2.3" WANDBOARD.ORG

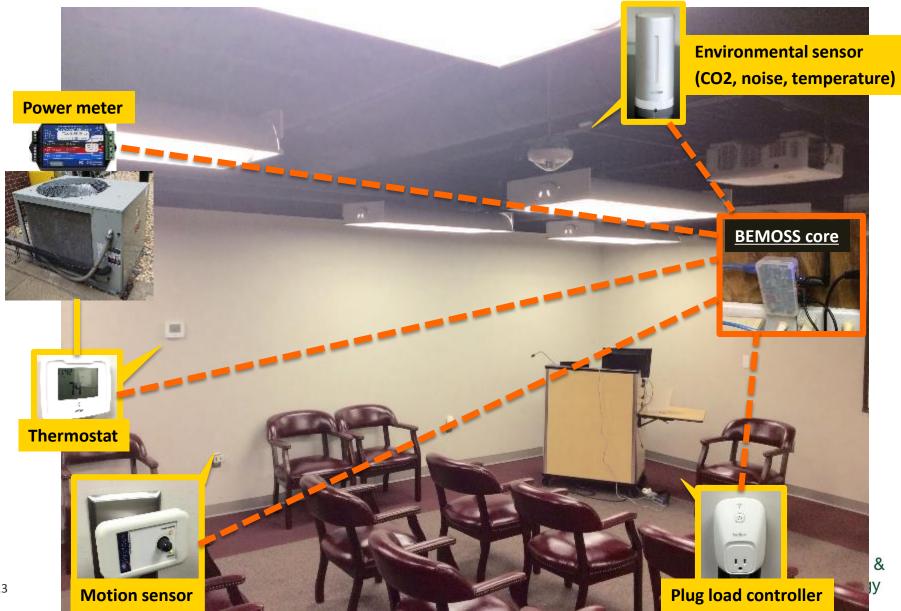

CPU: Arm Cortex A9 Quad core @ 1 GHz RAM: 1 GB Price: \$129 Size: 3.4"x2.4"

This enables low-cost deployment, and expandability.

BEMOSS Software Architecture



Living Laboratory – Building 1



Energy Encliency & Renewable Energy

Classroom being Monitored by BEMOSS Core

Building 2 – Equipment Bureau in Arlington, VA

2701 S Taylor St, Arlington, VA 22206

Office building size: 5,000 sqft Electricity consumption: N/A

Energy Efficiency & Renewable Energy

Building 3 – Retails and Offices in Blacksburg, VA

460 Turner St Blacksburg, VA 24060

Office building size: 41,301 sqft Electricity consumption: 49,800-65,200kWh/month

Energy Efficiency & Renewable Energy

Accomplishments:

Target date for BEMOSS v2.0 release in Github: 3/31/2016

Market Impact:

Energy savings and peak demand reduction from adjusting thermostat set points, light intensity and status of plug loads.

Lessons Learned:

API of devices can change overtime. A possible mitigation approach is to sign a contract with device manufacturers to make the developer aware of any API changes before their release.

Project Integration and Collaboration

Project Integration:

The BEMOSS advisory committee with representatives from 22 organizations from government and Industry has been established. The advisory committee members meet face-to-face on a quarterly basis with additional email exchanges based on work at hand.

Renewable Energy

Project Integration and Collaboration (Cont'd)

Partners, Subcontractors, and Collaborators:

Partner	Role
Arlington County	Offers access to Long Branch Nature Center for energy consumption data
Danfoss Corp.	Supports in modeling the performance of HVAC units under different operating conditions
VT Foundation	Offers access to buildings in Alexandria and Blacksburg, VA for BEMOSS demonstration

Communications:

- "BEMOSS: An agent platform to facilitate grid-interactive building operation with IoT devices" presented at ISGT Asia 2015, Nov 2015, Bangkok, Thailand.
- Invited talk at Arlington Public Library, Arlington, VA, sponsored by the joint Northern Virginia/Washington PES Chapter, in collaboration with the Industrial Applications and Control System Society Chapters in Northern Virginia and Washington, 24 June 2015, Arlington, VA.
- □ Invited Talk at Syracuse University, Co-organized by Dept. of EECS, Syracuse University & AP/MTT/EMC Chapter of the IEEE Syracuse Section Syracuse, NY, 19 June 2015, Syracuse, NY.
- "BEMOSS: An Agent Platform to Enable Grid-Interactive Building Operation with IoT Devices", presentation at the Workshop on Big Data Analytics in CPS: Enabling the Move from IoT to Real-Time Control, 6 April 2015, Seattle, WA.

Next Steps and Future Plans:

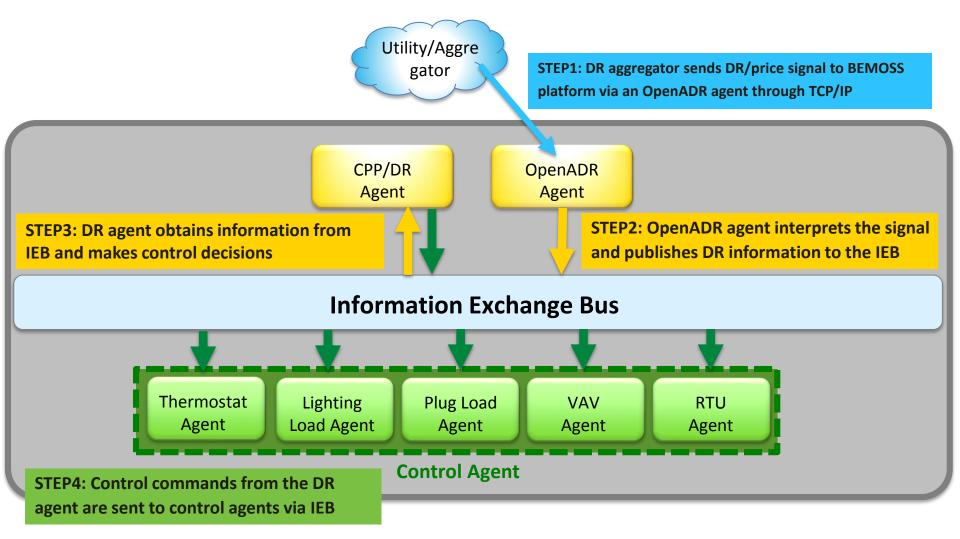
- BEMOSS deployment in three small and medium-sized buildings
- □ Functionality test and operational availability evaluation
- Estimation of electricity savings potential
- Transition of BEMOSS to v3.0
- Delivery of BEMOSS software tool v3.0 in Github

REFERENCE SLIDES

Energy Efficiency & Renewable Energy Project Budget:DOE: \$1,985,795Variances:N/ACost to Date:DOE: \$1,206,348Additional Funding: N/A

VT: \$69,884 VT: \$69,861

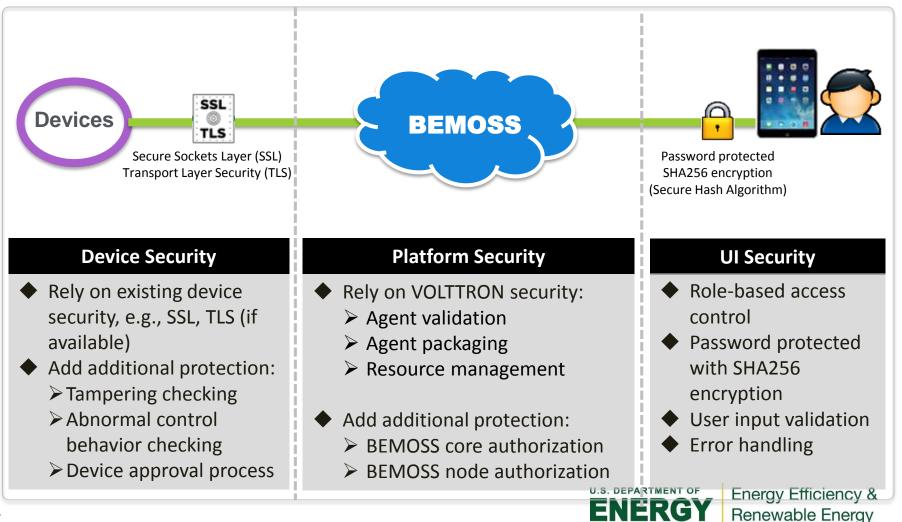
Budget History								
Budge	t Year 2	Budget	t Year 3					
January 2015 – January		March 201	L6 – March	Future				
2016		20	17	(planned)				
(past)		(cur	rent)					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$706,403	\$0	\$779,448	\$23	\$0	\$0			



Project Plan and Schedule

Project Schedule												
Project Start: November 2013		Completed Work										
Projected End: March 2017		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for missed milestones										
	 Milestone/Deliverable (Actual) use when met on time 											
		FY2014			FY2015			FY2016				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Task 1: BEMOSS Open Source Software Development												
Task 2: BEMOSS user interface and software tool design												
Task 3: Plug & play device integration												
Task 4: Incorporate additional software feature												
Task 5: BEMOSS software open source access and survey												
Task 6: BEMOSS advanced algorithm development												
Task 7: BEMOSS lab scale testing												
Task 8: Engineering design for BEMOSS deployment												
Current/Future Work												
Task 9: Demonstration in three buildings												
Task 10: Estimation of electricity savings potential												
Task 11: BEMOSS demonstration for fault detection												
Task 12: Transition of BEMOSS to v3.0												
Task 13: Delivery of BEMOSS software tools												
Task 14: Project management and reporting					\bullet			•	•	\bullet		

BEMOSS accepts OpenADR signals (CPP or DR)


BEMOSS can accept simulated OpenADR signals and take actions.

BEMOSS Security

BEMOSS utilizes built-in security features provided by VOLTTRON[™], and provides enhanced security features.

