Overview of Western’s Interconnected Bulk Electric System
Western Area Power Admin.
Objectives

• Describe Western Area Power Administration Region and Facilities Overview

• Explain Fundamentals of Electricity, Power Transformers and Transmission Lines

• Discuss Overview of the Bulk Electric System (BES)

• Objectives Review
Western’s Service Area

Western marketing areas and offices

Marketing area boundaries
- Central Valley and Washoe projects
- Parker-Davis, Boulder Canyon and Central Arizona Project
- Falcon-Amistad Project
- Provo River Project
- Loveland Area Projects
 - Pick Sloan Missouri Basin Program — Western Division and Fryingpan-Arkanasas Project
- Pick Sloan Missouri Basin Program — Eastern Division
- Salt Lake City Area/Integrated Projects
 - Colorado River Storage Project, Calabria, Rio Grande, Seedskadee and Dolores projects

- State Boundaries
- Regional Office
- Corporate Services Office
- CRSP Management Center
Wholesale Power Services

- Markets 10,479 MW from 56 Federal hydropower projects owned by Bureau of Reclamation (BOR), Army Corps of Engineers and International Boundary and Water Commission (IB&WC)
- 16,800 miles of high-voltage transmission line across 15 states
How is Electricity Created
What is Current and Voltage

Water analogy
Voltage = Pressure. Current = Flow
Transformers

Basic construction
- Two or more coils of wire wrapped around an iron core.
- A variation of an inductor, utilizes the magnetic field to transmit power to different voltage levels.
Transformer Operation

Primary Winding:
Ratings:
 Power = 10 MVA
 Voltage = 11.5 kv
 Current = 870 A
 Number of Windings = 23,000
Waveform:

Transformer:
 Magnetic Flux
 Primary Winding
 Iron Core

Secondary Winding:
Ratings:
 Power = 10 MVA
 Voltage = 115 kv
 Current = 87 A
 Number of Windings = 230,000
Waveform:
Substations and Transformers

- **Major Equipment**
 - **Transformers**: Transform voltage levels
 - **Circuit Breakers**: Isolate faults (disturbances) from the rest of the system
 - **Disconnect Switches**: Permit a circuit element to be safely disconnected and isolated from the system for maintenance or repair
 - **Lightning Protection**: Limit damaging transient voltage conditions
 - **Instrumentation**: Provide data needed to monitor the overall system and control the flow of power

Photo by Ravel F. Ammerman, NREL
Power System Transformers

Figure 12: Electricity Supply Chain

Hydro Generation System

Typical Hydroelectric Dam

- Reservoir
- Intake
- Penstock
- Turbine
- Powerhouse
- Generator
- Power Lines
- Outflow River

Power transmission and distribution system:

- Erection of high voltage transmission lines
- Transmission of electricity through power lines

Electricity generation and utilization:
Electrical Transmission System

Transmission Voltage Levels

Transmission
• 230 kilovolt (kV)
• 345 kV
• 500 kV
• 765 kV
• 1,000 kV and above

Sub-transmission
• 69 kV
• 115 kV
• 138 kV

Source: http://www.osha.gov/SLTC/etools/electric_power/illustrated_glossary/transmission_lines.html
Differences: Transmission vs. Distribution Systems

- Size and scale
- Operation is fundamentally different
 - Transmission system is operated actively
 - Distribution system is operated passively

Distribution Voltage Levels

<table>
<thead>
<tr>
<th>Medium Voltage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.16 kV</td>
<td></td>
</tr>
<tr>
<td>6.9 kV</td>
<td></td>
</tr>
<tr>
<td>13.2 kV</td>
<td></td>
</tr>
<tr>
<td>25 kV</td>
<td></td>
</tr>
<tr>
<td>34.5 kV</td>
<td></td>
</tr>
<tr>
<td>46 kV</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low Voltage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>480 volt (V)</td>
<td></td>
</tr>
<tr>
<td>120/240 V (single-phase)</td>
<td></td>
</tr>
</tbody>
</table>

Photo by Mike Coddington, NREL
Figure 14: Structural Variations of Transmission Towers

Transmission & Distribution Lines

Source: U.S. Department of Labor, OSHA
Transmission Line Thermal Ratings

- Transmission lines may have more than one thermal rating.
- A Continuous rating would indicate the maximum flow that can be carried under normal conditions.
- Emergency ratings for a predetermined period of time may be supplied.
- Ratings will be affected by ambient temperatures and conditions.
Transmission Line Thermal Ratings

- Sag on cold day
- Maximum sag full load on hot day

4.5 metres
How is Electricity Measured?

- Electricity is measured in terms of watts, typically in kilowatts (1,000 watts) or megawatts (1,000 kilowatts). One MW is enough capacity to instantaneously light approximately 750 – 1000 homes.

- A kilowatt (or megawatt) is the amount of energy used, generated or transmitted at a point in time. The aggregation of megawatts possible at a point in time for a power plant, for example, is its capacity. The aggregation of kilowatts used at a point of time is the demand at that point.
How is Electricity Measured?

• One kilowatt of energy consumed over an hour is called a kilowatt-hour (or kWh). Meters measure the kWh usage over a month. Billing rates are established as ¢/kWh.

• One megawatt generated, delivered, or consumed over an hour at the wholesale level is called a megawatt-hour (or MWh). Wholesale transactions are priced at $/MWh.
Electricity is Unique

- Is generated and consumed at nearly the same time
- Storage has been impractical on a broad scale although that’s beginning to change
- Requires an extensive delivery infrastructure (Bulk Electric System)
Balancing Generation and Load

Maintaining a reliable grid requires a constant balancing between generation (supply) and load (demand)
U.S. Power Generation Mix

Figure 3: U.S. Power Generation by Fuel Type in 2014
- Renewables (Excluding Hydro): 7%
- Hydroelectric: 6%
- Nuclear: 19%
- Natural Gas: 27%
- Petroleum Liquids: 1%
- Coal: 39%
- Other: 1%

Figure 4: U.S. Generation Capacity in 2013
- Renewables (Excluding Hydro): 7%
- Hydroelectric: 9%
- Nuclear: 9%
- Natural Gas: 42%
- Coal: 28%
- Petroleum: 4%

Sources: U.S. Department of Energy, Energy Information Administration (EIA)

Figure 2: Conceptual Flow Chart of the Electricity Supply Chain
- Generation Plants
- Step-Up Substations
- Transmission Power Lines
- Step-Down Substations
- Distribution Power Lines
- Customer End Use
Power Generation in the West

Generation in the Western U.S. AK, AZ, CA, CO, HI, ID, MT, NM, NV, OR, UT, WA, WY

Source: ACORE

United States Generation Mix

Source: U.S. Department of Energy
Transmission and the Grid

North American Interconnections

Western Area Power Administration
Power Flow on the BES

Figure 11: Daily System Demand Profile

Peak Demand 6.6 kW for 15 minutes

Maximum kW usage

Source: U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability
Seasonal Power Flow on the BES
Daily Demand Curve and Generation Mix

Source: California ISO (http://www.caiso.com/Pages/TodaysOutlook.aspx)
Generation Energy and Capacity

- Dispatchable
 - Conventional generation sources
 - Energy is inherently stored within source of fuel
 - Use when needed

- Non-Dispatchable
 - Renewable energy resources (wind and solar)
 - Characterized by variability and uncertainty
 - Energy source must be used when available

Generation Energy and Capacity
Regulation of the Interconnected Bulk Electric System (BES)

- **Federal Energy Regulatory Commission (FERC)** – Regulates the transmission and wholesale sale of electricity. Monitors energy markets.
- **North American Electric Reliability Corporation (NERC)** – Establishes reliability standards that grid operators must adhere to.
- **Regional Reliability Organizations (RRO)** - are the enforcement arm of NERC. They perform periodic audits of grid operators and can levy financial fines for non-compliance.
Regional Reliability Organizations
Electric Industry Regulation

- Utility commissions and districts regulate privately and publicly owned electricity providers
 - Utilities Commission
 - Utility Regulatory Commission
 - Public Utilities Commission
 - Public Service Commission (may be civil service oversight body rather than utility regulator)
 - Public Utility District (tribal, state, or government owned utility, consumer owned and operated, small investor owned)
 - Publicly owned utilities include cooperative and municipal utilities
 - Cooperative utilities are owned by the customers they serve (farmers and rural communities)
Balancing Authority Areas in the West
Reserves

Operating Reserves

Diagram of Reserve Generation, as Defined in NERC Glossary of Terms
Information Resources

Objectives Review

• Describe Western Area Power Administration Region and Facilities Overview

• Explain Fundamentals of Electricity

• Discuss Overview of the Grid
Questions?

???