Magnetocaloric Refrigerator Freezer

PI: Ayyoub M. Momen, <u>momena@ornl.gov</u> Oak Ridge National Laboratory

, Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

NERC

Project Summary

Timeline:

Start date: August 1, 2013 (FY 2014)

Planned end date: January, 31, 2017

Key Milestones

- Evaluation of MCM microchannels through collaboration with GEA (6/30/2016)
- Improve the regenerator structure (9/30/2016)
- Final optimization and testing and drafting the final report (12/30/2016)

Budget:

Total DOE \$ to date: \$1314K Total future DOE \$: \$286K

Key Partner:

CRADA project with General Electric Appliances

Collaborators:

Project Outcome:

The objective of this project is to develop a residential refrigerator with 25% lower energy consumption and reduced emissions using magnetocaloric refrigeration technology.

Brief Background: How magnetic refrigeration works

- Cycle starts with MC material (MCM) at T₀
- MCM is placed inside a higher magnetic field resulting in MCM temperature increase to $T_{\rm 0}$ + ΔT
- Heat is rejected from the MCM to ambient while inside the higher magnetic field, reducing its temperature to T₀
- MCM is removed from the higher magnetic field; resulting in reduced temperature to $T_0 \Delta T$
- Heat is absorbed by MCM from refrigerated compartment; increasing its temperature to T_0 , and the cycle is repeated

Brief Background: Achieving large temperature span

Use different MCM alloys with different curie temperatures and layer atop one another.

Purpose and Objectives

Problem Statement: In 2015 we realized and resolved two main problems facing the development of a highly efficient system:

- a) Developing the right manufacturing process for magnetocaloric material (MCMs)
- b) Solid/liquid interstitial heat transfer limitation

Target Market and Audience: The principal target market is residential/commercial refrigerators (>200M units). In addition, the technology has the potential to be used in larger-scale HVAC, drying, and industrial heating/cooling applications. **Impact of Project**:

Cooling/heating systems utilizing the magnetocaloric effect can be significantly more efficient than today's refrigeration systems.

- a) Final product will be a full scale magnetocaloric refrigerator-freezer
- b) The success criteria are to achieve a 100°F temperature span and approximately 100 watts of cooling capacity.
 - Near-term outcome: Develop a feasible design with emerging MCM materials
 - Intermediate-term: Design a magnetocaloric refrigerator-freezer
 - Long-term: Introduce a unit to the market

Approach

Approach: Efforts are concentrated in three categories:

- a) Develop manufacturing process for forming MCM
- **b)** Enhance the heat transfer rate, which translates into a higher system capacity

c) Develop a high-efficiency magnetocaloric system design Critical Issues:

- a) Solid/liquid interstitial heat transfer limitation
- **b)** Manufacturability of MCM

Distinctive Characteristics:

Research

Efforts

Develop unique additive manufacturing followed by a sintering process to fabricate MCM microchannels

Magnetic stabilization to develop 3D MCM microchannels

Solid state magnetocaloric machine

MCM particles are difficult to be manufactured to shapes and parts. They are fragile, heat sensitive, and very reactive

Progress and Accomplishments

Accomplishments:

- MCM successfully 3D printed in the form of microchannels
- Magnetocaloric microchannel successfully developed using a novel magnetic stabilization approach
- Patent 1: Magnetically stabilized MCM microchannel has been patented
- Patent 2: Fully solid state magnetocaloric machine has been patented
- Multiple publications/presentations
- GEA has developed several configurations of prototype machines

Market Impact:

This project can potentially save 0.75 quad of energy.

Awards/Recognition:

- Recognized research by EERE assistant secretary Dr. David Danielson
- US Provisional Patent Application, Magnetically Stabilized Magnetocaloric Microchannel
- US Provisional Patent Application, The fully solid state magnetocaloric system

Lessons Learned:

Pressure drop of MCM particulate regenerator is one of the primary loss sources of the MCM system.

1. Progress and Accomplishments: Developing manufacturing process to 3D print MCM microchannels

Binder jet additive manufacturing

- Additive manufacturing (AM) eliminates waste by using material only where it is needed
- Binder jet AM is well-suited for MCMs due to its low-temperature processing. Low temperature help to preserve MCE properties.
- Because it is inkjet-based, binder jet AM can also create highresolution features. This is an essential need to fabricate small microchannels.

Developing manufacturing process to 3D print MCM microchannels

Resolution in binder jet 3D printing

- Preliminary work revealed that powder shape, mesh orientation, and drop size affect resolution.
- Experiments were conducted to determine the most effective process settings for microchannel printing

Energy Efficiency & Renewable Energy

Binder Jet 3D printing of Long Microchannels

- A study was conducted to determine how binder amount, drop size, and print orientation affected channel cleanability for various lengths of channels
- Cleaning was attempted with each channel, and the number of block channels per sample group was counted.
- It was found that binder amount was the most significant factor.

Top view

Binder Jet 3d printing with MCM Powders

- Two MCM powders were printed: a jagged, hydrogenized powder and a spherical powder.
- Spherical MCM powder can reach very fine channel size (150-200 microns)
- The current focus is to improve highresolution printing with the jagged powder.

Figure 2: Isometric view of printed MCM material

Energy Efficiency & Renewable Energy

Developing manufacturing process for sintering and pressing MCM

Why?

Sintering and pressing MCM is very challenging and a necessary intermediate manufacturing process in MCM microchannel development.

Note: Sintering is the process of compacting and forming a solid mass of material by heat and/or pressure without melting it to the point of liquefaction.

After 8 months of R&D effort (In FY15):

- MCM die was successfully pressed
- Mold-cast MCM parts were successfully sintered to high densitie (up to 99% of material density)

MCM Powder

MCM press die

Findings:

-Sintering conditions including the right atmosphere, temperature, oxygen level, type of furnace were realized.

-Final densities of 97–99 % were achieved.

Printed MCM microchannel was successfully sintered to high densities

The sintered structure is very strong and robust

Energy Efficiency & Renewable Energy

Developing manufacturing process for sintering and pressing MCM

XRD (X-ray Diffraction) analysis indicated that crystalline structures were maintained during sintering

For the phase identification procedure, a search match was conducted using the Jade software and the ICDD database

Energy Efficiency & Renewable Energy

Developing a novel manufacturing process for making three dimensional microchannels

Magnetically stabilized MCM microchannels

ORNL is working on an innovative way to produce random elongated microchannels.

This solution significantly reduces the pressure drop and provides very high interstitial heat transfer rates. It has the potential to produce random microchannels as small as $20-100 \mu m$, which cannot be achieved by other manufacturing processes.

Ayyoub M. Momen, Magnetically Stabilized Magnetocaloric Microchannel," US Provisional Patent Application, ID DOE S-138,206, Feb 4th, 2016

Energy Efficiency & Renewable Energy

Developing a novel manufacturing process for making three dimensional microchannels

Magnetically stabilized MCM microchannels

A slice of the fabricated structure.

- Up to 10% enhancement of magnetization is achieved.
- Significant improvement in the hydrodynamic characteristics of MCM microchannel is reached.

Ayyoub M. Momen, Magnetically Stabilized Magnetocaloric Microchannel," US Provisional Patent Application, ID DOE S-138,206, Feb 4th, 2016

Pressure drop across the MCM (Red) After magnetic stabilization and adding epoxy. (Orange) After magnetic stabilization.(Green) Original particles.

Renewable Energy

Project Integration and Collaboration

Project Integration:

- 1) GEA requested to be the lead on patenting the 3 inventions (out of 5) proposed by ORNL
- 2) Weekly meetings between ORNL team members
- 3) Biweekly meeting between ORNL and GEA
- 4) ORNL-GE have quarterly site visits.

Past successes in similar CRADAs show that such close collaboration with manufacturers is the best path to success

Partners, Subcontractors, and Collaborators:

- GE Appliances

Communications:

- Conference Paper No. IMECE2014-38928,
- Conference Paper No. IMECE2015-53428,
- ASHRAE Presentation 2016
- Google Hangout http://www.youtube.com/watch?v=uDF_COU10JI
- Several visitors from public, private, media, industry, DOE

Energy Efficiency & Renewable Energy **Next Steps and Plans**:

- 1. Evaluation of MCM microchannels through collaboration with GEA (6/30/2016)
- 2. Improve the regenerator structure (9/30/2016)
- 3. Final optimization and testing and drafting the final report (12/30/2016)

Acknowledgment

REFERENCE SLIDES

Energy Efficiency & Renewable Energy Project Budget: DOE total \$1,600K FY 13-16
Variances: None.
Cost to Date: ~\$1150K as today
Future Funding: \$0

Budget History										
FY 2015		FY 2	2016	FY 2017						
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share					
\$550K	*	\$600K	*	NA	*					

Project Plan and Schedule

Project Schedule											
Project Start: 01-Aug-2013 (FY13)		Completed Work									
Projected End: 30-Sept-2016		Active Task (in progress work)									
	Milestone/Deliverable (Originally Planned) use for missed										
		Milestone/Deliverable (Actual) use when met on time								me	
		FY2015			FY2016			FY2017			
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)
Past Work											
Descrip.hypothetical manuf. to shape regenerators											
Development of at least 3-stage regenerator using at least one of the selected manufacturing processes.											
Developing complete regenerator via the selected manufacturing process.											
Current/Future Work											
Indentify testing procedures for comparable bed te	sting										
Testinf, fabrication MCM microchannels by collaborating with GEA								•			
Improve preformance of regenerator strructure											
Final optimization, testing and drafting the final rep	oort									•	
								-			