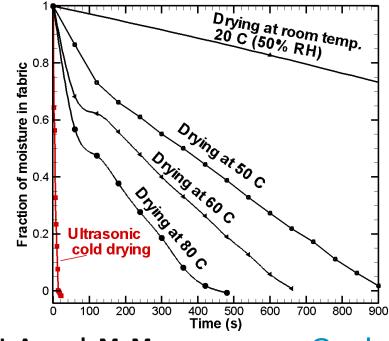

CLOTHES DRYER ENERGY CONSUMPTION

Ultrasonic



2016 Building Technologies Office

Peer Review

Subcontractor Industrial Partner

University of Florida General Electric

PI: Ayyoub M. Momen, <u>momena@ornl.gov</u> Oak Ridge National Laboratory

Project Summary

Timeline:

Start date: Sept 1, 2014 (FY 2015) Planned end date: March 31, 2017 Key Milestones

- 1. Develop and test a small-scale demo proof of the concept prototype and further validate the model –GO/NO GO(9/30/2015)
- 2. Design cold mist air carrier flow and mist passage (9/30/2016)
- 3. Develop the most appropriate full-scale ultrasonic dryer (9/30/2016)
- 4. Conduct comprehensive testing and refine/finalize the design of the full scale ultrasonic dryer (2/30/2016)

Budget:

Total DOE \$ to date: \$880K

Total future DOE \$: \$0

Key Partner:

Industrial Partner:

General Electric Appliances

Subcontractor:

University of Florida

Collaborators:

Project Outcome:

The objective of this project is to develop a clothes dryer prototype using piezoelectric transducers to mechanically extract water and achieve an Energy Factor, EF >10 (lb/kWh) and drying time <20 minutes.

Note:

Resistive heating element dryers: EF~3.5 Heat pump dryers: EF~5-8.5

Purpose and Objectives

Problem Statement: a) identifying suitable piezoelectric transducer for this specific application; b) identifying the best driving signal; c) integration and scale-up challenges; d) identifying the pros and cons of the technology.

Target Market and Audience: The principal target market is residential/commercial clothes drying processes (can be expanded to other industrial drying processes). **Impact of Project**:

Clothes dryers use **1%** of the nation's energy. The proposed technology can be significantly more efficient than current clothes dryers.

According to our market assessment study, ultrasonic dryers are projected to save up to **\$900 million** in consumer utility savings over 10 years. Using ACEEE's logic, these savings would support the creation of up to **6,350 jobs**.

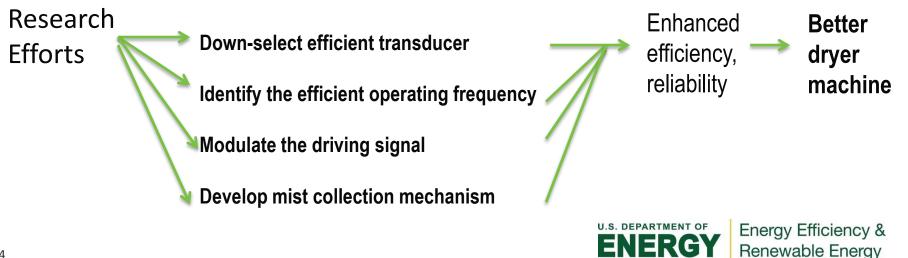
- 1. Final product will be a full scale prototype
- 2. The success criteria are to achieve an energy factor >10 (lb/kWh) for the largescale system.
 - a) Near-term outcome: Develop a feasible ultrasonic dryer design.
 - b) Intermediate-term: Design a dryer

3

c) Long-term: Introduce a unit to the market

Approach

Approach:


Research efforts are concentrated in three categories:

- a) Identifying, evaluating the right transducer
- b) Identifying, evaluating the right power signal
- c) Modulating transducers

Key Issues:

- a) Operation reliability
- b)Performance decay in the scale-up

Distinctive Characteristics:

Progress and Accomplishments

Accomplishments:

- Appropriate ultrasonic transducer selected (Milestone 2)
- Demo proof of the concept prototype developed (Go/No Go)
- Innovating burst width modulating amplifier developed (significantly improved efficiency over the small-scale system)

Market Impact:

This project can potentially save 1 quad of energy and be the first viable clothes dryer technology with EF>10.

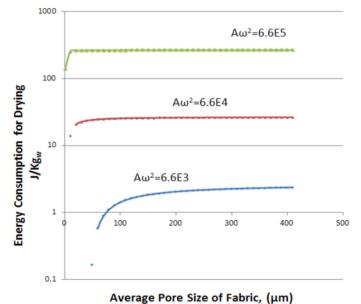
Awards/Recognition:

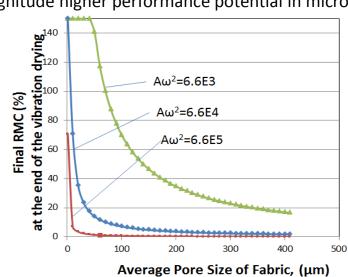
- Received "Blue status" from BTO: This is the highest level of grading on the project progress that rarely given to the projects (indicating it significantly outperforms on goals and performance measures)
- The project was recognized by EERE assistant secretary Dr. David Danielson
- ORNL Early career award
- Ayyoub M. Momen, Kyle Gluesenkamp, Edward Vineyard, Clothes Dryer Using Ultrasound Phenomena, US provisional patent application 62/158,562, May 8, 2015.

Lessons Learned:

- The cascading failure issues upon modulation of multiple transducers
- The importance of the impedance matching, and amplifier role
- The importance of the drive signals property
- The importance of the geometry and resonance frequency of piezoelectric transducers

Progress and Accomplishments:


Brief theoretical background

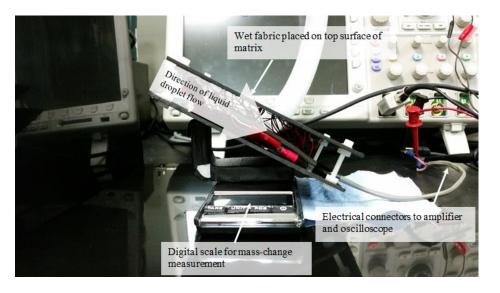

Heat-based drying:

 Conventional evaporation-based dryers must overcome the latent heat of evaporation and thus ideally need about 3.21–3.51 lb_{water}/kWh (or 2453–2257 kJ/kg_w). Considering the losses, existing dryers perform at 54–66% of their theoretical maximum efficiency.

Mechanical drying through vibration of $(y = A\sin(\omega t))$:

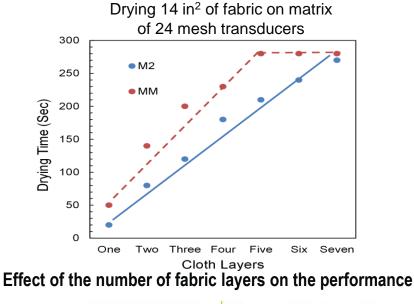
- Driving force is mainly inertia of water: $F_{Vib} \sim m_{drop} A \omega^2$
- Resistive force is capillary action: $F_{Cap} \sim \sigma \pi d \cos \theta$
- For a single microscopic pore (Orders of magnitude higher performance potential in microscopic scale):

The qualitative minimum theoretical residual moisture content (RMC) of the fabric after vibration under different amplitude and angular frequencies ($\omega = 2\pi f$),


The theoretical minimum energy consumptionof vibration based drying for a single pore.

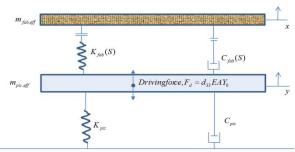
Renewable Energy

Progress and Accomplishments: Go/No-go Milestone


Proof of concept prototype was developed and evaluated; it exceeded the phase 1 goals

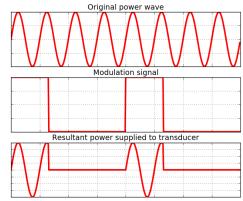
- The best 2 transducers down-selected
- Matrixes containing 24 transducers were developed and evaluated
- Experiments were conducted and the target results achieved
- The effect of number of fabric layers on the drying performance was investigated

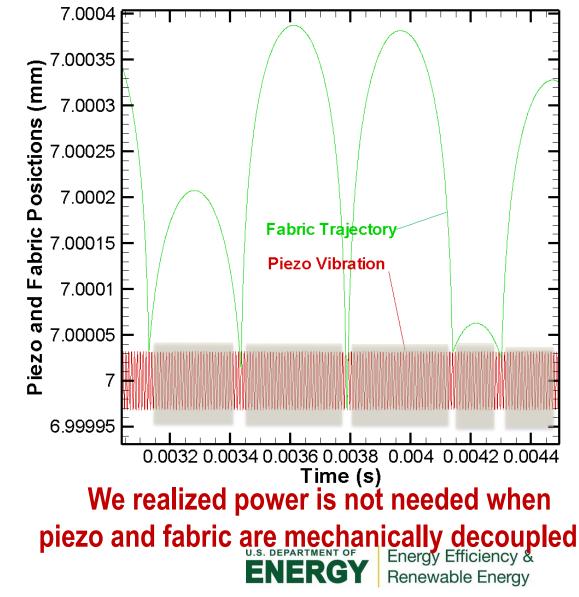
Goal	Drying time <20 min	Fabric size > 4 in ²				
Achieved	~ 7.5 minutes	~14 in ²				



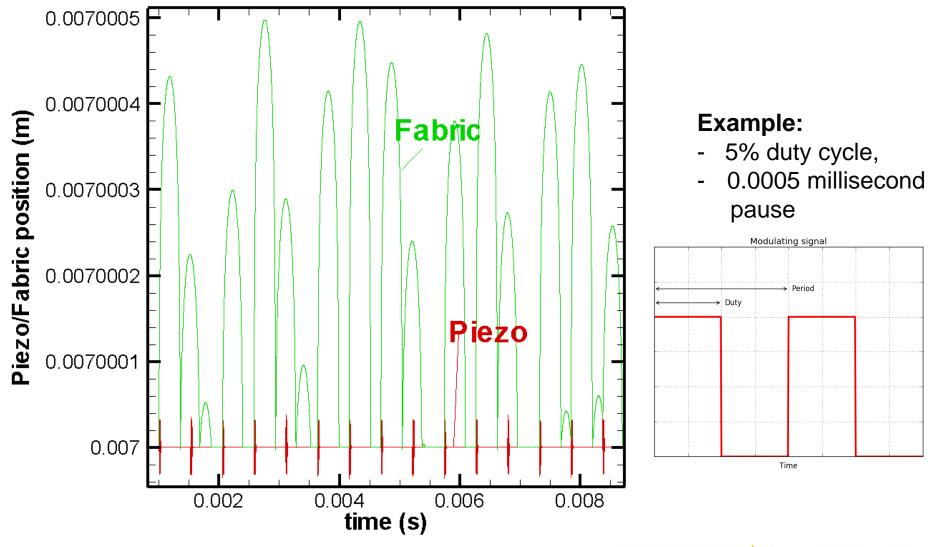
Progress and Accomplishments: Our model inspired a game-changing insight

A finite difference—based model for vibration of piezoelectric transducers and fabric vibration has been developed 7.0004

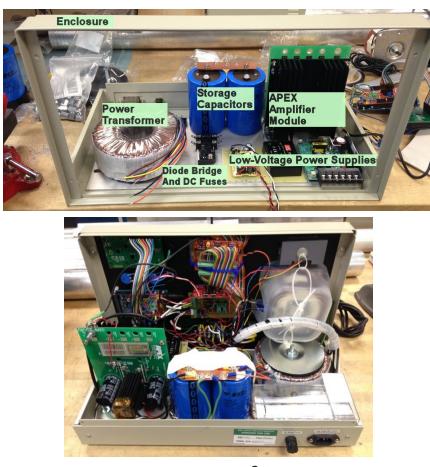



Significant Findings:

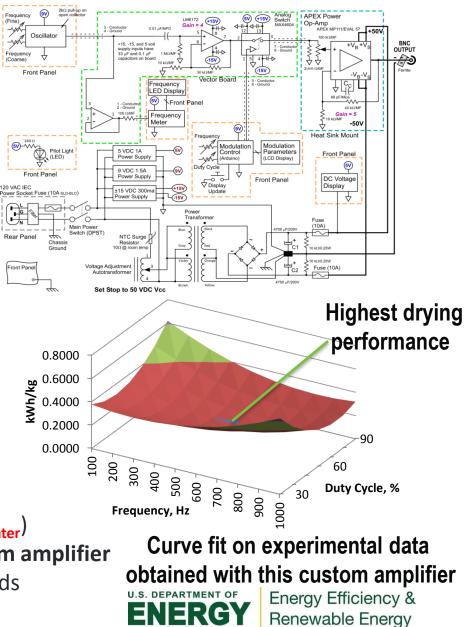
Running at partial duty cycle is better because:


- No energy is consumed when there is no mechanical coupling between piezo and fabric.
- 2) The kicks on the fabric

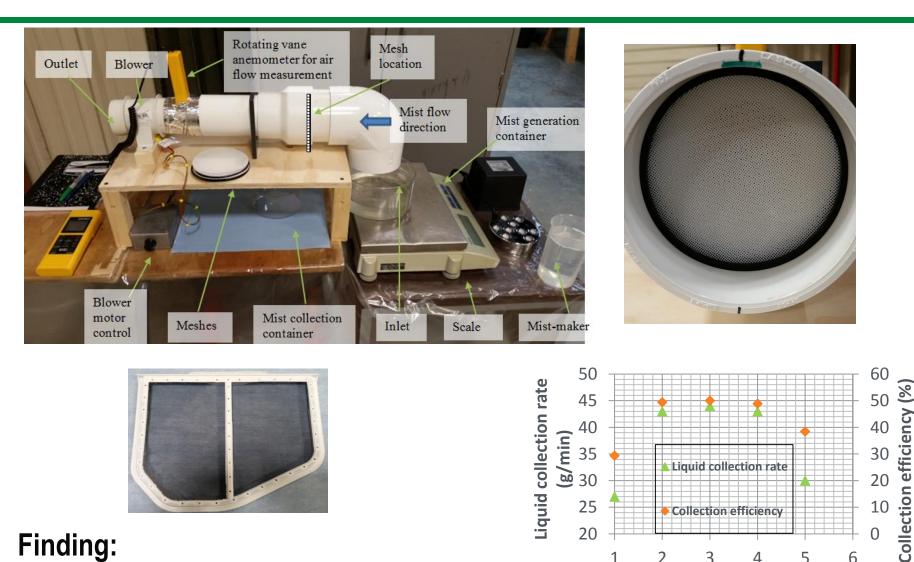
(acceleration) will be stronger.



Example: Burst Width Modulator Effect on Fabric Vibration/Drying



A Custom-made Burst Width Modulator (based on modeling results) Has Been Developed

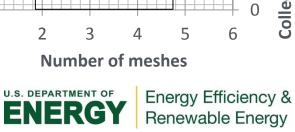


ORNL Findings on 1 cm² fabric:

- The drying efficiency <u>doubled (~712 kJ/kg_{water})</u> modulating the drive signal using the custom amplifier
- Energy consumption was reduced by five folds
 compared to conventional dryers

Mist collector design

25


20

1

2

Finding:

If mist collection mechanism is required, 2-4 layers of the conventional dryer filter can effectively collect the mist from the air stream.

Collection efficiency

10

Project Integration and Collaboration

Project Integration:

- 1) Weekly meetings between ORNL team members
- 2) Monthly meeting between ORNL/UF and GEA
- 3) ORNL-GE have quarterly site visits.

Partners, Subcontractors, and Collaborators:

GE Appliances

University of Florida

Communications:

Ayyoub M. Momen, Edem Kokou, Kyle Gluesenkamp, Omar Abdelaziz, Pradeep Bansal, Preliminary Study on the Performance of the Novel Direct Contact Ultrasonic Clothes Dryer, IMECE2015-50479.

Popular Mechanics

Ultrasonic Dryer Does the Laundry in a Fraction of the Time: Vibrations are coming to make laundry day a little less terrible. http://www.popularmechanics.com/technology/gadgets/news/a16676/dryer-invention-ultrasonic-vibrations/

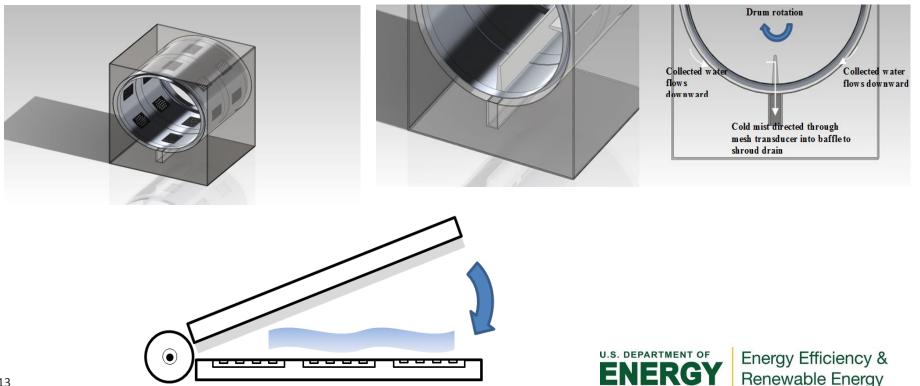
USA Today Scientist's cool clothes dryer uses vibration, not heat http://www.usatoday.com/story/tech/2015/06/23/cold-vibration-ultrasonic-dryer/29160935/

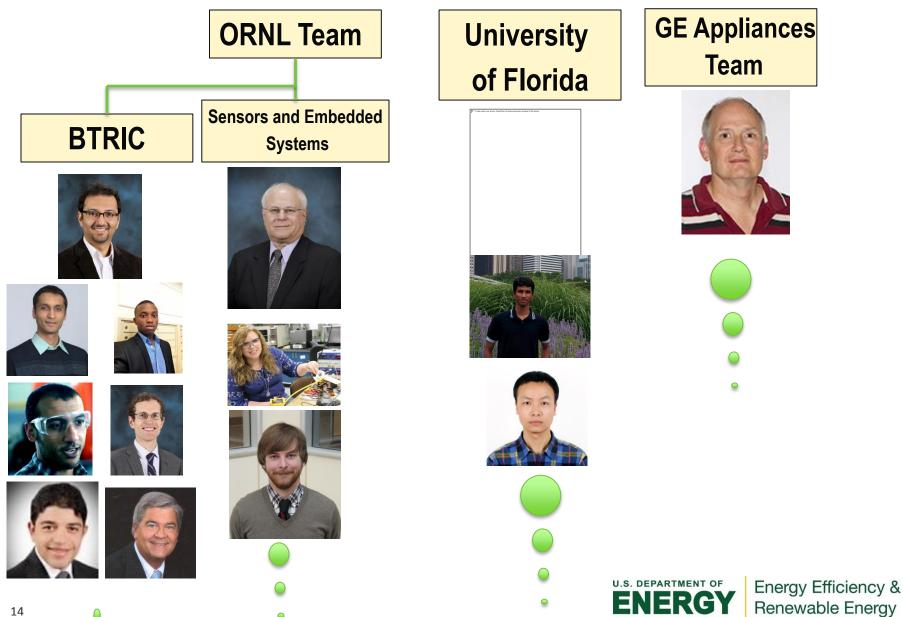
Nashville Public Radio

Oak Ridge Scientists Make Breakthrough In Age-Old Problem: Drying Clothes Faster http://nashvillepublicradio.org/post/oak-ridge-scientists-make-breakthrough-age-old-problem-drying-clothes-faster#stream/0

Digital Trends

Sick of waiting for the dryer? In a few years, new technology could dry clothes in minutes http://www.digitaltrends.com/home/ayyoub-momens-new-technology-dries-clothes-super-fast/


Project video by ORNL https://www.voutube.com/watch?v=poVwCmgcue8


Next Steps and Future Plans

Next Steps and Future Plans:

- 1. Scale up (June 30, 2016)
- 2. Evaluation/optimization: Target EF >10, drying time <20 minutes (September 30, 2016)

Acknowledgment

REFERENCE SLIDES

Project Budget: DOE total \$880K FY 2015— Mid FY 2017 Cost share (GEA): \$98K
Variances: None
Cost to Date: \$659K
Additional Funding: None

Budget History									
FY 2015 (past)			2016 rent)	FY 2017					
DOE	DOE Cost-share DOE Co		Cost-share	DOE	Cost-share				
\$438K	10%	\$437K	10%	\$103K	10%				

Project Schedule												
Project Start: Oct 2014		Completed Work										
Projected End: March 2017		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for missed						I				
		Milestone/Deliverable (Actual) use when met on time										
	<u> </u>	FY2015 FY2016			1	FY2017						
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)		
Past Work												
				_								
Appropriate ultrasonic transducer selection												
Complete development of the1 st order dynamic model												
Demo proof of the concept												
Market strategy and commercialization plan												
Carrier flow system design.												
Current/Future Work												
Full scale retrofit prototype development and shakedown tes		ting.										
Full scale dryer design & development												
Develop the cost model												
Achieve the target goals in the full scale ultrasonic dryer system												
Pre-commercialization activities												