High-Performance Refrigerator Using Novel Rotating Heat Exchanger

2016 Building Technologies Office Peer Review

Energy Efficiency & Renewable Energy

Omar Abdelaziz, abdelazizoa@ornl.gov Oak Ridge National Laboratory

Project Summary

Timeline:

Start date: 10/01/2014 Planned end date: 09/30/2016

Key Milestones

- 1. Development of the first prototype
- 2. Successful one-week-long open circuit testing
- 3. The rotating HX and frost collector unit successfully run and tested for one week

Budget:

Total Project \$ to Date:

- DOE: \$895,977
 - ORNL: \$475,477
 - SNL: \$245,000
 - UMD: 175,500
- Cost Share: \$99,500

Total Project \$:

- DOE: \$895,977
- Cost Share: \$99,500

Key Partners:

Sandia National Laboratories

University of Maryland

Project Outcome:

Run the first generation prototype for 1 week uninterrupted Developed market assessment study Developed frost collector model

Purpose and Objectives

Problem Statement: Develop cost effective higher efficiency residential refrigerators – targeting 12% efficiency improvement with a simple payback of less than 3 years.

Target Market and Audience: the target market is residential refrigerators. The 2030 total residential refrigeration energy consumption amounts to 0.99 Quad.

Impact of Project:

- This project will result in the development of the first HVAC&R application of a novel heat exchanger concept – air bearing heat exchanger or rotating heat exchanger (RHX) which has the potential to significantly improve the performance, reduce the frost penalty and the accompanying frequent defrosts.
- According to our market assessment study market share of the total market at ultimate adoption (>10 years following commercial viability) could

Scenario	Market Share	Maximum 10-Year	Maximum 10-Year			
	(# units)	Savings (\$M)	Job Creation			
1.5 Year Payback	48% (5 million units)	\$590 - 910	4,340 - 6,700			
5.0 Year Payback	8% (> 1 million units)	\$90 – 330	660 - 2,450			

Approach

Approach:

Develop next generation refrigerator evaporators based using the RHX technology

Key Issues:

- Frost formation and release from a rotating surface
- Performance impact on the refrigerator
- Long term reliability
- Cost

Distinctive Characteristics:

Air-Bearing heat exchanger technology provide potential for performance improvement. This is the first attempt at applying it in a realistic HVAC&R product to boost its efficiency.

• Major characteristics: quiet, frost resistant, compact

Progress and Accomplishments

Accomplishments:

- Evaluated the performance of RHX under varying operating conditions
- Successfully run the RHX in a benchtop refrigerator for 7 days uninterrupted
- Performed Market assessment

Market Impact:

- Identified frost deterrence capabilities of RHX
- Evaluated energy benefit of RHX
- Identified potential for market share growth (up to 48% at ultimate adoption) and indirect job creation (up to 6,700)

Awards/Recognition: N/A

Lessons Learned:

- Baseplate design may result in cost increase
- Increased air flow rate require special accommodation

First Generation Prototype

- 5.5" diameter impellers, motors and shafts
 - Adapted from the condenser unit developed in previous SNL/UMD program
 - Provide >100 W of cooling at 1000 rpm
 - 96 cfm air flow
- Custom baseplates with refrigerant channels, air bearing, and motor mount
 - 0.8 mm × 0.8 mm flow channels, 3 passes
- N₂/compressed air for air bearing startup

Week Long Experiment – Experimental Facility

- Compressor cycled to maintain -21°C < T_{chamber} < -19°C
- RHX constantly rotating
- T_{ambient} = 32.2°C (DOE Testing Conditions)

Week-Long Experiment Results

 $Q_{ave} = \dot{m}_{R134a} \Delta h_{RHX} = 131.4 \text{ W}$

Frost Study

• The high-speed camera setup allowed for capture of frost growth on the entire fin height

Stationary Impellers; 53 hrs.

hour 53:14

Cycling Impellers; 49 hrs.

hour 49:16 Energy Efficiency & Renewable Energy

Frost Study Results

Energy Efficiency & Renewable Energy

greatly enhanced

- Rate of frost growth on RHX is much slower than on conventional HX
 - Large air flow rate
 - Centrifugal forces
- Defrosting of RHX is much faster than conventional HX
 - Desirable to be frost particle removal need defrost process optimization
 - Easy water shedding capability
- Geometric limitation on frost thickness and airflow
 - Inner spacing determines maximum frost thickness
 - Frost growth impacts CFM
 - Tradeoff between number of fins (higher surface area) and fin spacing (longer period of time before defrost)

4 mm

Second Generation Prototype

- Vertically mounted in freezer compartment, in place of conventional evaporator
- Frost-resilient, high performance heat-sinkimpeller design

- 165 mm diameter heat-sink-impellers (2)
- 1000 rpm
- 0.036 K/W thermal resistance with 9 W of input power
- > 0.35 ft³ savings in freezer compartment

Frost Collector Design

- Goal: to design a frost collector that can effectively separate frost particles from supply air flow using minimum volume
- Method:
 - Commercially-available Computational Fluid Dynamics (CFD) tools were utilized to simulate the RHX air flow
 - Discrete Phase Method (DPM) was enabled to study the interaction of solid (frost) and air flow and predict the particle trajectory
 - The collision impact between collector and frost were considered by inputting coefficient of restitution
- Research Procedure:
 - General study on particle trajectory prediction for RHX
 - Propose candidate design(s)
 - Optimize selected design

Frost Collector Design – General Study on Trajectory

Frost trajectory of vertically placed impeller Frost trajectory of horizontally placed impeller

- Particle typically stays in the frost collector for less than 0.1 seconds for horizontally placed impeller and up to 0.14 seconds for vertically placed impeller
- Larger density (>=50 kg/m3) and larger size (diameter >= 1cm) frost particles' trajectory is greatly affected by gravitational force
- Small frost tends to be airborne

Frost Collector Design – Design Optimization

- Objectives: minimize volume and minimize frost accumulation in the collector
 Louvers
- Optimization parameters:
 - D1
 - D2
 - D3
 - α
 - β

U.S. DEPARTMENT OF

Project Integration and Collaboration

Project Integration: partnership between ORNL, SNL, and UMD

- SNL performed previous studies on market potential; appliance and equipment outreach; and provided samples and prototypes for evaluations
- ORNL and UMD have a historic partnership and strong industry collaboration. ORNL and UMD reached out to several of the appliance manufacturers and provided them with some information on benefits of this new technology

Communications:

- Work presented at the ASHRAE Winter Conference 2016
- Frost study will be presented at the ACEEE Summer Study Conference 2016

Next Steps and Future Plans:

- Continue planned project activities:
 - Integrate frost collector
 - Fabricate and integrate second generation prototype
 - Run 1-month long un-interrupted experiment to evaluate longevity
- Future design with 1 impeller design (cost, integration)
- Reach out to appliance and equipment manufacturers in order to find pathways to eventual commercialization
 - Use project results as stepping stones for CRADA negotiation
- Disseminate knowledge

REFERENCE SLIDES

Project Budget

Project Budget:

- Federal funds:
 - ORNL: \$475,477
 - SNL: \$245,000
 - UMD: 175,000
- Cost Share (University of Maryland): \$99,500

Variances: NA

Cost to Date: (02/29/2016)

- ORNL: \$390,583
- SNL: \$209,000
- UMD: \$99,512 (Federal) + \$56,418 (Cost Share)

Additional Funding: NA

Budget History								
FY 2015 (past)		FY 2016 (current)		FY 2017				
DOE	Cost-share		DOE	Cost-share		DOE	Cost-share	
\$651k	\$99.5k	0		0	NA		NA	

Project Plan and Schedule

Project Start: 10/01/2014		Completed Work							
Projected End: 09/30/2016		Active Task (in progress work)							
		Milestone/Deliverable (Originally							
		Milestone/Deliverable (Actual)							
		FY2015 FY2016							
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	
Past Work									
Preliminary Design Specification									
Baseplate Design									
Fabrication of prototype									
Go/No-Go Decision: unit run for 1 week uninterrupted									
Market Assessment									
Current/Future Work									
Design Frost Collector									
Design and Integrate 2nd generation prototype									
Operate 2nd Generation prototype for 1 month uninterrupted									