“Case in Point”
Community-Scale Renewable Energy at
Blue Lake Rancheria

Prepared for:
U.S. Department of Energy
Community Scale Renewable Energy Workshop
Palm Springs, CA
February, 2016
Overview

- Introductions
 - Jana Ganion, Energy Director, Blue Lake Rancheria

- Energy Vision

- Renewable Energy Development Details

- Related Financial Initiatives

- Q&A
Blue Lake Rancheria, California

- Federally Recognized (1908) | 51 Members
- Tribal Government | 15 Divisions | 30 Programs
- ~100 Acres of Trust Land along the Mad River | Co-manager
- Economic Enterprises | ~400 EEs | 2,000 Visitors Daily
- 2015-16 White House “Climate Action Champion”
- 2014 “Integration Award” from PG&E
- Appointed to Dept. of Energy’s National Indian Country Energy and Infrastructure Working Group (ICEIWG)
Energy Vision

- Climate Action / GHG Reductions / Community Resilience
- Community-wide Energy Strategy / Aligned with Regional Plans
- Community Resilience / Energy Security
- Levelized (Predictable) Cost of Energy / Economic Development
- Goals: 40% GHG Reductions by 2018 (2014 baseline)
 100% renewable energy through onsite generation

Microgrid Groundbreaking at BLR
Local Climate Change Impacts

- Big Wildfires
- Drought & Water Shortage
- Extreme Storms & Floods
- Landslides
- Infrastructure Damage
- Threats to Life & Safety

www.bluelakerancheria-nsn.gov
Microgrid Project

- Low-carbon, Community-scale Microgrid for Critical Infrastructure
- Purchase Utility Infrastructure
- ~1.6 MW of Onsite Power
- 1MWh of Battery Storage
- Layering multiple renewable power sources (solar, biomass/fuel cell)
- ~0.8 MW of Onsite Load (~6 buildings)
- Microgrid Control System
Microgrid Objectives

- Power a certified American Red Cross shelter-in-place
- Integrate multiple renewable energy sources, energy storage, and controllable loads
- >40% of annual energy production with renewables
- Demonstrate finer-grained demand response ability
- Displace fossil electrical energy consumption by ~1,500 MWh in year 1
- Replicable model
Microgrid Development Process

- Critical infrastructure review
- Design
 - Generation sources – 500kW solar; 1MWh battery storage; 175kW biomass/fuel cell; 1MW diesel gen set + 80kW gen set
 - Loads – tribal government office, casino 480kW, hotel 200kW, 3 restaurants, event center, and other buildings
 - Load shed + stability
 - Forecasting of economic factors (based on utility rate)
 - Forecasting of weather and other environmental factors
 - Anti-islanding safety + islanding functionality
 - UL 1741 + IEEE 1547
- Funding Application and Approval (California Energy Commission)
Microgrid Development Process

Operational scenarios

- Blue sky, business as usual
- Mandatory demand response
- Bid demand response
- Short term outage ~< 3 days
- Long term outage ~> 3 days
- Black start
- Reconnection back to the grid
Solar Array ~500 kW (Future/New)

(Water Tower) Grid Battery Storage and microgrid control room

175kW Renewable Energy (biomass to fuel cell) Distributed Generation Power System (in operation 3/15); 10 days islanded operation (via biomass fuel storage)

Small Groundwater Well; Currently unfiltered water; ? GPM capacity

1MW Generator
Diesel powered; 3,000 gallon tank; 50 gallons per hour consumption rate = ~120 hours of islanded operation, depending upon energy use.

Blue Lake Hotel - 2,000A / 480V / 3 phase service; powers hotel + renewable energy system. 102 hotel rooms for shelter in place

Blue Lake Casino – 2,000A / 480V / 3 phase service; powers casino and sapphire palace + receives energy from renewable energy system. 44,000 square feet; 3 restaurants; 4 sets of restrooms

UPS - 2 Liebert (150 kVa and 50 kV a) and 1 MGC (36 kV a) battery banks; 15 minutes of islanded operation (slot machines servers, e lighting)

Sapphire Palace – receives energy from casino service. 800-person capacity; 1 set of restrooms; available shelter-in-place and/or medical facility.

Tribal Office – Separate meter. Kitchen facilities, 1 set of restrooms (septic system)

80kW Generator for Tribal Office; ~24 hours of islanded operation
Microgrid Partnerships

- Schatz Energy Research Center (SERC)
- Humboldt State University
- California Energy Commission
- Idaho National Laboratory
- National Renewable Energy Laboratory
- Pacific Gas & Electric Company (PG&E)
- Blue Lake Rancheria
- Technology Partners
Lessons Learned

- Equipment connection compatibility/compliance
 - Inverters smart enough to interact with microgrid management system and other components
- Electrical engineer, electrician, facilities manager
- Utility communication – early and often
- Timeline: final design 3/16; online 12/16
- Energy management system for HVAC
- State-funded project on Tribal lands (e.g., CEQA)
Community Scale Benefits

❖ Climate Action
 ▪ Transition from conventional to renewable energy and fuels
 ▪ Support regional, national, and global GHG reductions
 ▪ Utilize cleanest forms of energy

❖ Community Resilience
 ▪ Greater control over power infrastructure
 ▪ Short- and long-term operability as a regional shelter-in-place
 ▪ Emergency power with the ability to island

❖ Economic Benefits
 ▪ Business-as-usual blue sky conditions – dispatch management
 ▪ Retail energy savings - $40,000/year (2014) to ~$200,000/year (2017)
 ▪ Renewable energy / energy efficiency incentives – Clean Power Plan, RECs
 ▪ Utilize lowest cost source(s) of onsite energy
 ▪ Economic development
 ▪ Utility
Current and Upcoming Initiatives

☑️ DOE Office of Indian Energy Policy and Programs START Project
 • Strategic communications for energy
 • M&V - GHG baseline to verify reductions

☑️ DOE Technical Assistance
 • Building Efficiency
 • Cyber Security

☑️ Clean Power Plan
 • Structure for more tribes to participate in the trading market
Thank you.
Questions?

Jana Ganion
Energy Director, Blue Lake Rancheria
jganion@bluelakerancheria-nsn.gov

www.bluelakerancheria-nsn.gov