Chaninik Wind Group Villages
- Kipnuk pop. 639
- Kongiganak pop. 439
- Kwigillingok pop. 321
- Tuntutuliak pop. 408

Formed organization to work together to build local capacity and innovate ways to reduce energy costs.
CWG started in 2005 with a simple idea...

- Install wind turbines to
 - Lower the cost of energy (heat and electricity)
- Small communities should work together
 - Reduce dependency on diesel fuel
 - Create local jobs
 - Certify and train employees
 - Become sustainable communities
CWG Strategies for Success

✧ Build capacity as a foundation for lasting economic development

✧ Good information to make good decisions, lower costs, and give a pathway to sustainability

✧ Adopt innovation to meet needs and support values

✧ Lead efforts to plan for community energy use creating value and fostering new opportunities

✧ Think outside the box
Wind Heat Smart Grid Design

Wind Turbines

Village Power Plant

Supervisory Controller

Smart Gateway
(sends measurement data to the EnergySmart Server)

Remote Servers:
* MAS Server
* Smart Grid Controller
* EnergySmart Server

Internet

Smart Meter Collector & ZigBee Master
* Connects to MAS server via Internet.
* Connects with up to ~1500 Meter Nodes via wireless communication.
* Controls local ZigBee slave devices (wireless) on command from Smart Grid Controller

Ethernet (other options available)

Internet

Smart Meter Node & ZigBee Master

User Display

Solar

Electric Vehicle
ZigBee slave

Thermal Stove
ZigBee slave

Battery for Local Energy Storage
ZigBee slave
Wind Heat System Components

Systems in Kongiganak, Kwigillingok and Tuntutuliak

• 95 kW Windmatic wind turbines

• Electric Thermal Storage (ETS) devices

• Community-wide Smart Metering and Smart Grid control
• ETS heat output at high is equivalent to a Toyostove Laser 56
• $.10 per kwh is equivalent to buying diesel at $2.90 per gallon
• Current diesel price in Kongiganak: $6.95 per gallon
KONGIGANAK POWER PLANT

System Status
ETS OPERATING

VILLAGE LOAD

Set Time	Description

Wind Speed (mph)
15.9
16.2

SCADA Scan Time
500

CHANINIK WIND GROUP
iES INTELLIGENT ENERGY SYSTEMS
Kongiganak Energy Summary 2013

KONGIGANAK POWER PLANT
Energy Summary (kWh)

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan</td>
<td>Feb</td>
<td>Mar</td>
<td>Apr</td>
<td>May</td>
<td>Jun</td>
<td>Jul</td>
<td>Aug</td>
<td>Sep</td>
<td>Oct</td>
<td>Nov</td>
<td>Dec</td>
</tr>
<tr>
<td>Diesel 1</td>
<td>42,370</td>
<td>320</td>
<td>1,100</td>
<td>22,020</td>
<td>17,640</td>
<td>380</td>
<td>29,830</td>
<td>62,540</td>
<td>2,730</td>
<td>23,180</td>
<td>89,790</td>
<td>91,340</td>
</tr>
<tr>
<td>Diesel 2</td>
<td>25,260</td>
<td>71,690</td>
<td>73,620</td>
<td>47,320</td>
<td>53,320</td>
<td>63,860</td>
<td>38,850</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diesel 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>780</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20,810</td>
<td>75,720</td>
<td>59,830</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diesel 4</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>240</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>280</td>
<td>1,580</td>
<td>2,420</td>
</tr>
</tbody>
</table>

Total Diesel Generation

| | 67,830 | 72,010 | 74,720 | 70,120 | 70,960 | 64,240 | 68,800 | 83,590 | 78,450 | 83,010 | 90,070 | 92,920 | 916,720 |

Wind Turbine 1

| | 15,618 | 15,234 | 15,575 | 21,588 | 11,740 | 7,867 | 8,301 | 7,078 | 10,988 | 10,560 | 4,067 | 10,895 | 139,512 |

Wind Turbine 2

| | 11,764 | 4,789 | 8,160 | -10 | - | 1,396 | 736 | 2,919 | 10,670 | 13,439 | 14,341 | 11,381 | 79,588 |

Wind Turbine 3

| | 26,130 | 18,936 | 22,211 | 20,113 | 15,733 | 12,018 | 9,678 | 8,921 | 5,854 | 15,038 | 14,444 | 11,510 | 180,584 |

Wind Turbine 4

| | 23,363 | 5,139 | -61 | 13,437 | 14,968 | 3,886 | 2,603 | 5,316 | 8,485 | 7,168 | 3,455 | 4,813 | 92,571 |

Wind Turbine 5

| | - | - | - | - | - | 1,672 | 10,926 | 2,333 | -62 | -53 | 14,816 | - | |

Total Wind Generation

| | 76,876 | 44,099 | 45,885 | 55,128 | 42,441 | 25,167 | 21,318 | 25,905 | 46,923 | 48,539 | 36,245 | 38,546 | 507,071 |

Total Generation

| | 144,706 | 116,109 | 120,605 | 125,248 | 113,401 | 89,407 | 90,118 | 109,495 | 125,373 | 131,549 | 126,315 | 131,466 | 1,423,791|

Summary of Consumption

<table>
<thead>
<tr>
<th></th>
<th>Station Service</th>
<th>Wind to Village</th>
<th>Wind to Load Regulator</th>
<th>Wind to ETS</th>
<th>Total Village</th>
<th>Total Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>2,742</td>
<td>40,487</td>
<td>14,556</td>
<td>18,833</td>
<td>108,317</td>
<td>144,706</td>
</tr>
<tr>
<td></td>
<td>2,387</td>
<td>28,254</td>
<td>7,032</td>
<td>8,813</td>
<td>100,264</td>
<td>116,109</td>
</tr>
<tr>
<td></td>
<td>2,757</td>
<td>31,072</td>
<td>8,527</td>
<td>6,285</td>
<td>105,792</td>
<td>120,605</td>
</tr>
<tr>
<td></td>
<td>2,455</td>
<td>33,362</td>
<td>11,898</td>
<td>9,868</td>
<td>103,482</td>
<td>125,248</td>
</tr>
<tr>
<td></td>
<td>2,627</td>
<td>23,518</td>
<td>11,335</td>
<td>7,588</td>
<td>94,478</td>
<td>113,401</td>
</tr>
<tr>
<td></td>
<td>2,974</td>
<td>14,383</td>
<td>8,442</td>
<td>2,342</td>
<td>78,623</td>
<td>89,407</td>
</tr>
<tr>
<td></td>
<td>2,819</td>
<td>14,593</td>
<td>5,723</td>
<td>1,002</td>
<td>83,993</td>
<td>90,118</td>
</tr>
<tr>
<td></td>
<td>2,549</td>
<td>16,640</td>
<td>7,489</td>
<td>1,776</td>
<td>107,805</td>
<td>109,495</td>
</tr>
<tr>
<td></td>
<td>2,897</td>
<td>29,355</td>
<td>12,892</td>
<td>4,676</td>
<td>116,385</td>
<td>125,373</td>
</tr>
<tr>
<td></td>
<td>2,881</td>
<td>33,375</td>
<td>8,859</td>
<td>6,305</td>
<td>113,450</td>
<td>131,549</td>
</tr>
<tr>
<td></td>
<td>2,338</td>
<td>23,380</td>
<td>8,364</td>
<td>6,481</td>
<td>118,400</td>
<td>126,315</td>
</tr>
<tr>
<td></td>
<td>2,524</td>
<td>25,480</td>
<td>7,832</td>
<td>5,233</td>
<td>1,230,619</td>
<td>131,466</td>
</tr>
</tbody>
</table>

% Diesel kWh Displaced by Wind

| | 37.4% | 28.2% | 29.4% | 32.2% | 24.9% | 18.3% | 17.5% | 16.6% | 27.2% | 28.7% | 20.6% | 21.5% | 25.5% |

[Logo of CHANINIK WIND GROUP and IES INTELLIGENT ENERGY SYSTEMS]
Example – Kongiganak ETS Fuel Displacement 2013

[Graph showing fuel displacement from January to December 2013, with bars representing gallons equivalent and a line representing kwh.]
Lessons Learned

- Energy issues must be addressed on all levels
- More resources are needed to build capacity
- New opportunities reveal themselves everyday
- Risks are possible…expect the unexpected
- Stay positive and focus on the project goal
Quyana cakneq!

Thank you very much!

Special Thanks To

This work is possible because of your support.