

How to Make Biomass-to-Energy Work in Rural Alaska

> Jeff Coombe Keith Henn Al Randall

April 29, 2014

www.tetratech.com

Tetra Tech Alaskan Project Experience

3 Office Locations – Anchorage, Fairbanks, Juneau HelioTech JV – Alaska Native Corporation 8(a)

Tetra Tech Works With Tribal Groups

Cherokee Nation	Northern Arapaho
Cheyenne River Sioux	Northern Cheyenne Tribe
Cheyenne-Arapaho Tribes of Oklahoma	Oglala Sioux Tribe
Chippewa Cree Tribe of the Rocky Boys Reservation	Omaha Tribe of Nebraska
Crow Creek Sioux Tribal Council	Osage Nation
Flandreau Santee Sioux Tribe	Ottawa Tribe of Oklahoma
Fort Peck Tribes	Ponca Tribe of Nebraska
Ho-Chunk Nation	Prairie Band Potawatomi Nation
Iowa Tribe of Kansas & Nebraska	Prairie Island Indian Community
Keweenaw Bay Indian Community	Red Cliff Band of Lake Superior Chippewa Indians of Wisconsin
Kickapoo Tribe of Kansas	Red Lake Band of Chippewa Indians of Minnesota
Kickapoo Tribe of Oklahoma	Sac & Fox Tribe of the Mississippi in Iowa
Lac Courte Oreilles Band of Lake Superior Chippewa Indians	Santee Sioux Nation
Lac du Flambeau Band of Lake Superior Chippewa Indians	Shakopee Mdewakanton Sioux Community of Minnesota
Lac Vieux Desert Band of Lake Superior and Chippewa Indians	Shawnee Tribe
Leech Lake Band of Ojibwe	Spirit Lake Nation
Lower Brule Sioux Tribe	Standing Rock Sioux Tribal Council
Lower Sioux Indian Community of Minnesota	Turtle Mountain Band of Chippewa
Menominee Indian Tribe of Wisconsin	Three Affiliated Tribes
Miami Tribe of Oklahoma	Upper Sioux Community of Minnesota White Earth Tribal Council
Mille Lacs Band of Ojibwe Indians	Ysleta del Sur Pueblo

Selecting the Correct Boiler

Project Pillar

Key Project Attribute

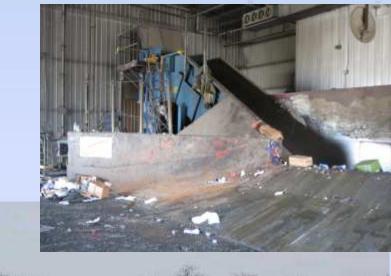
- Source and Impacts
- BTU content vs moisture content
- Consistency vs. variety of materials
- Toxics / carcinogens
- Energy Off Takes
- Electrical Loading
- Thermal Loading
- Mass & Energy Balance
- Site and Project Footprint

Feedstock - Categories

- Waste Biomass
 - Municipal Solid Waste (MSW)
 - Organics Food waste
 - Fiber Paper, Cardboard, Wood (RDF)
 - Construction & Demolition (C&D)
- Woody Biomass
 - Chip wood (pulp-and-paper industry standard chip spec)
 - Stewardship & stand thinning
 - Logging slash
 - Mill residues (sawdust & other waste)
 - Fuel wood

Feedstock – MSW

- Unsorted MSW
 - Widely available
 - Difficult to handle / process
- Separation Steps Needed !
 - Higher quality of Feedstock consistent, homogenous
 - Difficult to implement / reduced capture volume
- Construction & Demolition Waste and Urban Wood
 - Wood, paper, cardboard focus
 - Potential for EPA 'Biomass' Designation


Material Recovery Facility (MRF)

- 20,000 tons/yr min throughput
- Metals recycling primary

C&D MRF

- Aggregate recycling
- Shingles to hot mix
- = Value-added Recycling

Feedstock - Construction & Demolition

- 30-50% woody material
- Negative-cost feedstock
- Value-added byproducts
 Metals, aggregate, shingles

Wood 38%
Drywall 20%
Cardboard 13%
Ferrous Metals 13%
Brick & Block 8%
Plastic 4%
Other 4%

Wood 20%
Brick & Block 17%
Drywall 15%
Tar Roof Tear Off 14%
Polystyrene Foam 11%
Ferrous Metals 9%
Textiles/Carpet/Pad 7%
Other 7%

Source: Illinois Sustainable Technology Center

Feedstock – Woody Biomass

- Logging Residues Slash Mitigation
- Forest Hazard Mitigation
- Secondary Growth Market
- Beetle Kill

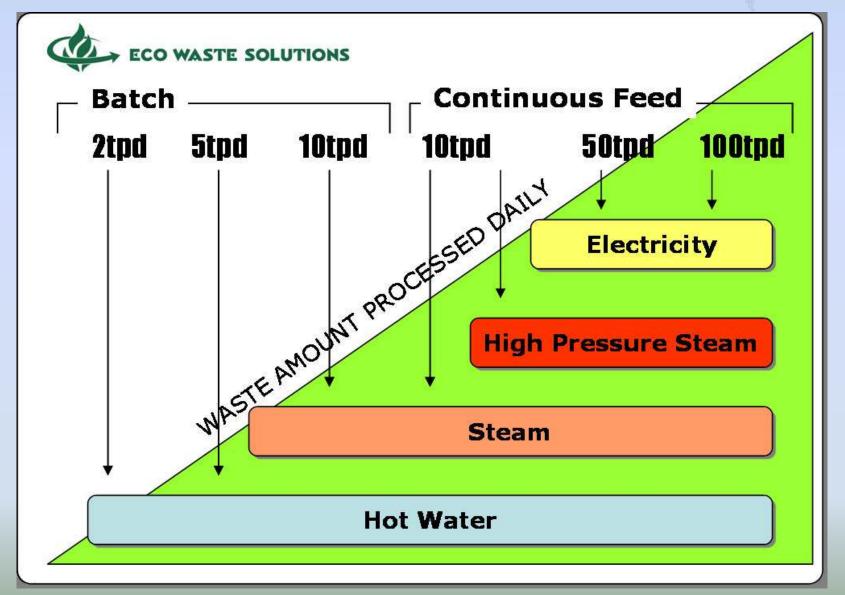
Biomass to Energy Technology

Technology spectrum

Basic Combustion (Simple)

Hybrid Gasification

Gasification (Complex)


Products Produced

- Thermal Heat
- Combined Heat and Power (CHP)
 - Electricity for Operations (<1 to 10+ MW)
 - Heating / Hot Water / Cooling
- Syngas / Pyrolysis Oils / Liquid Fuels

Thermal or Electrical Energy

Residential Wood Gasification Boilers

Courtesy: Tarm

Multi-Fuel Boilers (Wood / Oil / Coal)

Courtesy: Alternate Heating (E100 WoodGun)

Courtesy: ATMOS (DC 18 SPL, DC 25 SPL, DC 32 SPL)

Courtesy: Biomass NExtGen

Community-Scale Gasifiers

GARN WHS-1000 • PERFORMANCE and SPECIFICATIONS

180,000 (BTU/H)
1.5" NPT Supply • 1" NPT Return
Optional

Hybrid Gasification

Courtesy: Eco Waste Solutions

Hybrid Gasification

Pro's

- Accepts plastic and contaminants
- Higher efficiency over combustion

Con's

- Higher CapEx \$10MM +
- Minimum size ~ 2MW CHP
- More complex

Courtesy: Envikraft

The photos below depict 4,000 lbs of unsorted MSW before and after processing:

Drivers for Bioenergy & Waste to Energy

Energy, Savings & Jobs

- Electricity in remote locations >> \$\$\$ (Kotzebue 42 ¢ / kWh)
- Diesel Prices \$6 to \$10 / gallon
- Landfills >> High operation costs & tipping fees
- SE AK secondary growth markets

Secure Power and Landfill/Waste Diversion

- Local, Base load Power
- Recycling, Landfill diversion, value-added byproducts
- Job Creation & "Economic Clusters"
- Funding Sources Available

- Bioenergy / WtE are proven technologies
- Bioenergy / WtE uses local waste resources
- Systematic Evaluation process is required One size does <u>not</u> fit all...

Bioenergy / WtE can work in many rural towns !!

Jeff Coombe Jeff.Coombe@tetratech.com