

HUD, STATE OF ALASKA & AK REGIONAL HOUSING AUTHORITIES | AN ENERGY EFFICIENCY PARTNERSHIP SUCCESS STORY April 29, 2014

Presented by:
Dan Duame, Executive Director
Aleutian Housing Authority

- 14 RHA's
- Created in the early 1970's under Title 18 of Alaska Statues

Major conduit for federal, state & private affordable housing funding & services

- 51 NAHASDA Recipients
 - ¶ 14 Regional Housing Authorities (TDHE's)
 194 Tribes
 - § 37 Individual Tribal Recipients
- Total Alaska NAHASDA Allocation = \$91, 656, 892
 - RHA's = \$77,501,997
 - [©] ITR = \$14,154,895

12,000 new homes since 1971

New SFH | Unalaska, Alaska

2012 RHA operations resulted in:

• Energy efficient homes: 190

Homes weatherized: 1,220

Homes rehabilitated: 740

Housing units managed: 4,100

Millions of Dollars

In 2012, RHAs generated \$273 million in economic activity and 2,240 jobs for Alaskans.

\$99 million **invested** in construction, home improvement and acquisition

Funding

Three significant sources of funding for improving energy efficiency:

- 1. NAHASDA | federal
- 2. Supplemental Housing Grant Program state
- 3. Weatherization | state

Sources

Building communities, empowering Alaskans.

AHFC SUPPLEMENTAL HOUSING DEVELOPMENT GRANT

AHFC SUPPLEMENTAL HOUSING GRANT

Provides a **20**% match to federal HUD funds for:

Purpose

- © Energy efficient design features
- On-site water & sewer facilities;
- Roads to project sites; and
- Electrical distribution systems

Requires adherence to State BEES standards

No other required energy efficiency or building code standards in most of rural Alaska

Funding History

1991 1992 **199** 1994 1995 1996 **3**

Since 1993: High (2012): \$11 M

Low (2000): \$3.8 M

2014: \$7 M

Results: Construction and rehabilitation of 11,700

units in over 250 communities

AHFC SUPPLEMENTAL HOUSING GRANT

FY 2011-2013

AVCP Supplemental

\$8,827,559 (92 Units) **Grant Expenditures:**

AHA Supplemental Grant Expenditures:

\$1,211,807 (103 Units)

Building communities, empowering Alaskans.

WEATHERIZATION

Total projected Weatherized Units through March 31, 2014: 13,500

Savings

- Average saving in ENERGY costs
- Low 20%(ANC) High 40% (AHA/NANA)

Savings

- Average annual HEATING FUEL savings
- 19.8 million gallons

Savings

- Average STATEWIDE dollar savings
- \$46 million

RHA Weatherization Activity

2012

Weatherization Contracts

Contracts \$22.6 million Weatherization Activity

Units: 1220

Weatherization Workforce*

Trained Workforce : 1145

Alaska homes use Twice the total amount used as other homes classified as "cold / very cold climates"

times the energy / sq. ft.

NANA region = \$9.15 / sq. ft. (9x)

Average US = \$.97

Average in Alaska: \$5.86 National average = \$3.98

[\$5.83 (SE) - \$10.00 (Interior)] Rural average much higher

19,810

Alaska homes (8% of occupied housing)

estimated to be

one-star rated

Weatherization of **existing** infrastructure

ROI and benefit to AK's most needy population.

- 1,100 miles from Anchorage
- 4.5 hour flight
- (RT) Airfare \$1750
- Heating fuel \$7.65 per gallon
- Electricity \$.75 per kwh
- Barge service 2 to 3 times per year

WX Client No.	Annual Fuel Saving in gallons	Annual Cost Savings
15	302	\$3,106.60
13	455	\$4,052.00
6	675	\$6,018.00
2	580	\$5,372.00
11	425	\$3,883.65
10	550	\$4,811.00
8	266	\$2,631.09
7	203	\$2,224.86
6	275	\$2,822.00
Total	3,731	\$34,921.20
Average	415	\$3,880.13

ATKA Post Weatherization Average Client Savings 42%

"My fuel cost was cut nearly in half.
When you pay an upward of \$8
dollars a gallon, this is significant.
Prior to weatherization I would use
roughly 800 to 900 gallons of fuel a
year."

Past & Present

AHA | Looking to the Future

We are always seeking continuous improvement. We are never afraid to question the status quo.

SUMMARY

Welearned a lot . . .

SUMMARY

No Magic Sullet

SUMMARY

Process evolved into
Three on-going
projects / activities

SUMMARY

- Octagon Model (Designed to be "net-zero energy")
- Stabilized-insulated
 Rammed Earth Model
- Optimization (of existing model)

Sand point A – Rendition

OCTAGON

PROTOTYPE

- Designed for Net-Zero Energy
- Ventera VT10-240 10Kw Turbine
- 1000 Gal Thermal Storage Tank
- Double-wall 2x4 Construction: Blown Fiberglass Insulation

Looking to the Future: The Ultimate in

The Ultimate in Sustainable Housing Stabilized-Insulated Rammed Earth

A.8.1

Earth Dwell LTD. + RMH Design

Sloping gently towards the south and the adjacent hillside the Aleutian Earth House is a simple shed form with a sod roof that blends the structure with the surrounding landscape, offers habitat for migratory birds, and provides additional thermal insulation. The thick earthen walls, erected from on-island subsoil, meld the structure into the landscape. The shifting lines of color reflect the variation in the subterranean strata and the presence of iron oxides found within the earth. The entire structure appears as though it emerged from the earth to facilitate the living experience of the inhabitants. The design is guided by the necessity to shelter, provide and inspire. The green roof provides multiple environmental benefits which extend beyond the structure and site: it will remove particulates from the atmosphere and act as a bio filter for the rainwater, before storage for uses on

Modern stabilized-insulated rammed earth walls are very durable, thermally efficient, non-toxic, and eliminate the necessity for any other wall materials. Once the walls are stripped of the forms they are complete. There is no need for exterior siding, interior sheetrock, or paint. Electrical conduit and air ducts placed in the walls during construction allow for clean simple walls to surround the inhabitants. The wall finish is a reflection of the local soils and the ramming process. Using an abundant local material reduces the shipping cost for the project, offsetting the greater labor costs associated with rammed earth construction.

Rammed Earth

Prototype

PRO'S

- Open Potential use of local materials
- Two wall elements instead of 8-9 for most if not all structural elements
- © Construct the walls with a single process & walls are complete (possible exterior sealant)

Rammed Earth

Prototype

CON'S

- © Labor intensive;
- Materials may not be available
- Specialized skills

Rammed Earth

HUD "Sustainable Construction in Indian Country" Small Grant Program

AHA received **\$100K** for "Stabilized Rammed Earth Demonstration & Technology Dissemination Project."

SCIC Grant

Purpose

Will conduct structural & energy

efficiency performance research
in partnership with West Virginia
University – Constructed Facilities
Center

AHA conducting PHPP12*

"optimization"
modeling & analysis
on existing and
prototype models

("Passive House Planning Package" v.12)

Additional

Strategies

Strategies

Moving towards implementing

"PH Standards" on all projects

Focus on

- 1. Quality (energy efficiencies /life cycle costs) over Quantity
- 2. End User Cost over TDC

Strategies

RHA ACTIVITY

- Kodiak Solar Thermal
- CIHA Solar Thermal (Eagle River Project
- THRHA Ketchikan Heat Pumps / Wood Pellets
- AVCP Interior Value Engineering
- NWIHA Cold Climate/ HUD (ICDBG) Project

HUD, STATE OF ALASKA &
AK REGIONAL HOUSING AUTHORITIES
| AN ENERGY EFFICIENCY
PARTNERSHIP SUCCESS STORY
April 29, 2014

Presented by
Dan Duame, Executive Director
dan.duame@ahaak.org
907-563-2146
www.ahaak.org

