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Hydrogen, heat, and electricity provide )
links between energy sources

Laboratories

Introduction of hydrogen
increases the operational
flexibility of future low
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Hydrogen, heat, and electricity provide )
links between energy sources

Laboratories

Image: BrightSource Limitless

Focus of the current analysis: Hydrogen and electricity
production from solar energy in the form of heat

Background Approach Assumptions CSP overview CSP-H, integration




Hydrogen, heat, and electricity provide
links between energy sources

Background

Approach
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m National
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Analysis Goal: Explore pathways for
Integrating concentrating solar power
(CSP) and solar hydrogen production

- Do synergies exist that could
reduce costs?

Analysis Scope: Process-level
iIntegration of CSP and H, production
* No consideration of H, for energy
storage
» No transportation/geographical
considerations (e.g., benefits of co-
locating H, production near H, users)

Assumptions CSP overview CSP-H, integration




Modeling approach leverages previous =)
analyses of CSP and H, production

Laboratories

CSP H, Production
Published reports / models DOE H, production models
developed at Sandia = Discounted cash flow analysis

based on conversion efficiency and
capital, O&M, and materials costs

= Power conversion calculations and
reliability analysis

= Capital and O&M cost estimates "Output is cost of H, per kg

- Levelized cost of electricity (LCOE)
= Cost reduction / performance targets

)
—

*\ Key relationships were extracted

| 1| and represented in a simplified
‘ J Excel-based model

|

= |dentify important performance drivers and fundamental conditions
that favor CSP-H, integration (NOT process optimization)

Objectives:

= Understand key uncertainties and ensure robustness of conclusions

D D

Approach




" ﬁg%gﬁal
Assumptions: Process performance and costs @&,

I H2A Hydroge Cash Flow 1 ysis Tool v3.0
et =3 TR ove | . . .

il I H, Production: Process configurations and costs
== taken directly from DOE H, Analysis (H2A) models
=T - “Future Central Hydrogen Production”

- = (start-up year: 2025-2030)
uLhaeL: B::mmm Copral Cots ane i e Heliostat Cost Reduction Study An Evaluation of Possible

Next-Generation High-Temperature
Molten-Salt Power Towers

CSP: Process configurations and
costs taken directly from DOE and
National Laboratory reports

- SunShot target costs (2020)

- V—— (1Y) sana Natoaltaboatrios

For both H, production and CSP, assumptions are based on future systems
10
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1 11 1 ﬁgggﬁal
Assumptions: Future electricity prices Lfc

= Current electricity prices?:
= CA: $0.13/kWh retail (industrial), ~S0.04/kWh wholesale
= AZ:$0.07/kWh retail (industrial), ~S0.03/kWh wholesale

= Recent analysis shows solar PV Power Purchase Agreements (PPA) reaching
grid parity (after incentives)

$0.30

5~ 32 MW (New York)

$0.25
Y 550 MW )
(55 4o Wanpah
\ J ’ ~
s015 | LR ["“\MW‘\k
g - : = N+
Source: Bolinger & Seel, “Utility-Scale Solar 2014: An \ ‘('--— 2 N N2
Empirical Analysis of Project Cost, Performance, and Pricing $0.10 1 O PV(7,234MW, 100 contracts) | S\ SAXLSNEAZ IR

W=t

Trends in the United States,” LBNL-1000917, September 2015 CPV (35 MW, 2 contracts) :
$0.05 + @ Mixof PV/CPV (7 MW, 1 contract) —————— <z — = AR

s CSP (1,301 MW, 6 contracts)

Levelized PPA Price (Real 2014 $/kWh)

e < ©o
o

Jan-02 +
Jan
Jan-0
Jan-05
Jan-0
Jan-07
Jan-08
Jan-09
Jan-10
Jan-11 -
Jan-12
Jan-13
Jan-14
Jan-15
Jan-16

PPA Execution Date

= However, several factors could lead to higher electricity prices

Potential increases in natural gas prices (share of electricity generation is rising)

= Renewables Portfolio Standards (RPS), Cap and Trade, US EPA’s Clean Power Plan, etc.
- Could increase the price of renewable power

= As penetration of wind and PV 1, storage capability of CSP could command a premium

1Source: EIA 11
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1 11 1 ﬁgggﬁal
Assumptions: Future electricity prices Lfc

= Future electricity prices (2020-2030) are highly uncertain > Parameterize

CSP Hydrogen

plant production > Hydrogen
Electricity . ___ Assume - Electricity

(sold) same price (purchased)

= Assume H, plant could purchase electricity at same price that a CSP plant
could sell electricity

= Assume CSP and H, production facilities owned by same entity
= H, is the primary product - account for electricity revenue in H, cost

(annualized capital cost)yith e~ gen + (O&M cOSt) yith e~ gen — electricity revenue

H, cost =
2 (annual H, production) ity o~ gen(plant availability) yith - gen

12
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Concentrating solar power (CSP)

= Heliostats (mirrors with 2-axis
directional control) reflect sunlight
onto a solar receiver

= Heat is absorbed by a working fluid
and transferred to an electricity

Y Solar receiver

Source: Sandia (Joe Florez)

generation unit (storage optional) Thermal storage
=  Approximate capital cost / \
brea kd own: Stc:l::gt;s ?I"gnk I N Stc?rcajlges'lgellink

= Heliostats: 30-40%

= Solar receiver: 20-25%
= Storage: 20-25%

= Electricity gen: 15-20%

=
3
7 ateem Gererato ﬁec wricity

generation

Conventional
EPGS

Baseline CSP plant: Power Tower configuration with molten salt
thermal storage and subcritical Rankine cycle electricity generation
- 2010 Sandia estimate: $0.15/kWh; SunShot goal: $0.06/kWh

O
a

Heliostat
field

13
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Define major CSP units for analysis @E=.

= Collection of light and
conversion to thermal : Light > Heat Solar receiver :
energy (Light > Heat) T :

= Heliostat field |

| i L3

= Solar receiver |
Thermal storage |
|

|

|

|

|

|

|

= Thermal storage

565°C  \ )

Hot Salt & Cold Salt 290° C

Storage Tank

Storage Tank

= Electricity generation

= Steam generator

Z28

= Turbine
= Cooling towers

Conventional
EPGS

Electrlc_lty EIec'Fricity
generation to grid

CSP overview CSP-H, integration

14
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Heat can be treated as a “feedstock” (@),

28.8 % 50.4 % 50.2 %
Heliostat Solar Thermal
field Receiver storage
8.4 % 0.2%
412 %

Collector Losses @eiver Los@ Storage Losses

Receiver losses 1as T 1

Heat “quality” is defined by:
- Temperature
- Avalilability (storage)

Solar thermal energy “feedstock”

IS a major cost;
Cost rises with temperature

Cost of heat
($/unit energy)

Receiver Temperature /

However, higher T allows more efficient production of electricity or H,
- Sandia analysis: Optimal T for CSP is ~565°C

15
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Goal: Investigate opportunities for ) s
integrating H, production and CSP processes

Laboratories
H,O

l

Light > Hydrogen
heat production

—> Hydrogen

TEIectricity

Electrlc_lty EIec'Fricity
generation to grid

H2A analyses assume purchase of grid electricity
- Current analysis considers co-production of electricity (CSP)

Key gquestion to ask for each process: Are there potential synergies between
the processes which would favor co-location of CSP and H, production?

- Waste heat streams

- Byproducts - Feedstocks

Thermal energy is a major cost = Focus on heat streams for CSP-H, integration

Background Approach Assumptions CSP overview CSP-H, integration




CSP yields few byproducts ) .

Low-T salt High-T salt
Steam - &
generator " 'I / Steam Generator
~ Conventional
Pump w Electricity EPGS
Condenser Electricity generation cycles feature efficient
l internal heat integration

. . - Waste heat exiting system is of low qualit
Heat is rejected at g sy quality

~40°C-60°C Water serves as working fluid in closed cycles

- No significant material waste streams

Look to H, production processes for integration opportunities

Background Approach Assumptions CSP overview CSP-H, integration
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. Sandia
Three scenarios were analyzed Ll

1. Baseline: CSP electricity coupled with polymer electrolyte
membrane (PEM) electrolysis (low-T)

2. Elevated temperature (850°C) electrolysis integrated with a
CSP plant

3. High temperature (1380°C) metal oxide thermochemical (TC)
H, production integrated with a CSP plant




. . Sandia
Thermal energy input varies by process ) e

Hydrogen production costs
= Thermal energy
= (Capital costs
" Fixed O&M costs
= Electricity cost
= Materials costs

Data sources:
H2A models of H, production

$/kg

Contribution to H, cost

$4.50
$4.00
$3.50
$3.00
$2.50
$2.00
$1.50
$1.00
$0.50
$0.00

High TRL
Low-to-mid
TRL
Very low " Materials
TRL B Electricity
¥ Fixed O&M
W Capital costs
B Thermal energy
PEM High-T Metal
electrolysis electrolysis oxide TC

= High-T electrolysis leverages a relatively small amount of thermal energy
to significantly increase efficiency of H, production

= Thermochemical metal oxide (TC) cycles convert larger amounts of
thermal energy directly to chemical energy

= Electricity is required to drive equipment, etc.

20



BASELINE CASE: PEM ELECTROLYSIS
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PEM electrolysis case assumes no integration (e
of H, production and electricity generation

Laboratories

Water Reactant
Delivery Management
Process v g Oxygen

Water System :| System Gas

Power Electronics: Electrolyzer Stacks Hydrogen Gas Hydrogen
AC/DC Transformer with Controller and Management Gas
Grid Power and Rectifier Sensors System

Oxygen Gas
Management

Image Source: James et al., PEM Electrolysis H2A Production Case Study Documentation,
Grant DE-EE0006231, Arlington, VA, December 31, 2013.

= Main inputs are water and electricity = No heat inputs

= Electrolyzer stack, power electronics, and H, gas management
system account for most of capital costs (~70%)

22
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Electricity costs dominate for PEM electrolysis [,

PEM Electrolysis H2A Case Cost Summary S 14

M Feedstock Costs

n
L)

Bars around the baseline costs reflect the potential spread of stack and BOP "”c'“d'_“gf StaFk and C urre nt I /
capital cost (based on +/-20% of capital cost) BOP efficiencies)

S12
BOP Capital Costs ® —Future :/
5 & $10 - | ~
) 3 n
w“ - i u Fixed O&M "g $8 Suns Qt | //
— - (o) \‘: // ,
_ c
Stack Capital Costs g:)o 56 |
o I 2010 SNL
=]
-
I

A

M Indirect Capital Costs

and Replacement

H, Production Cost Only ($/kg H,)

:/estimate
I

o8,
B S T

—_— Costs
= Electricity cost t $2 !
51 u gectommlssmnlng I I
osts
I I 50 — | l |
Other Variable Cost
% et e ot $0.00 $0.05 $0.10 $0.15 $0.20
Current Forecourt Future Forecourt Current Central  Future Central Electricit cOst S/kWh
Case Study y !
Source: James et al., PEM Electrolysis H2A Production Case Study Results from H2A model of Hydrogen Production from PEM Electrolysis .

Documentation, Grant DE-EE0006231, Arlington, VA, December 31, 2013.

= H, production via PEM electrolysis requires low-cost electricity
= Using 2010 SNL estimate of CSP costs (50.15/kWh), H, cost is $8-10/kg
= Using SunShot target (50.06/kWh), H, cost is $3.75-55/kg

23
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HIGH-T ELECTROLYSIS
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High-T electrolysis uses thermal energy ) s
to increase efficiency

Laboratories

H2A analyses assume Heat Hydrogen Hvd
heat is supplied by a ed oroduction |~ ydrogen
nuclear reactor* T

Grid electricity
= Thermal energy 1s used to raise the Breakdown of costs ($2.93/kg H,) for H2A case

temperature of electrolysis $0.01 _$0.13

- A portion of electrolysis energy
can be supplied as heat

B Thermal energy
B Capital costs
Fixed O&M

B Electricity

= Heat input is relatively low:
6.8 kWh, / kg H,, versus
electricity input of 33.2 kWh_ / kg H,

B Materials

Source: Future Central Hydrogen Production from Nuclear
Energy via High Temperature Electrolysis, H2A Case Study

*Forthcoming H2A case will not specify source of thermal energy 25
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Current analysis assumes solar thermal energy

H,O

l

Hydrogen
production

—> Hydrogen

T

CSP Electricity

= Assume solar receiver(s) with 340 MW, output

= Total amount of heat available is similar to H2A case

= Solid particle receivers provide heat at ~850°C

Sandia
National
Laboratories

26
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Current analysis assumes solar thermal energy @

H,O
~850°C y
Light > Hydrogen
heat production Hydrogen

T Waste heat

CSP Electricity 77

= Assume solar receiver(s) with 340 MW, output

= Total amount of heat available is similar to H2A case

= Solid particle receivers provide heat at ~850°C

= Electricity consumption is high

Key Factors:
" Process yields low-T waste heat

Sandia
National
Laboratories

27
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Sandia

High-temperature electrolysis Case 1 )t

Single tower dedicated to providing thermal energy, multiple additional CSP

towers to provide electricity H,0
~850°C J
Light > Hydrogen
heat production |~ Hydrogen
565°C | TEIectric:ty (through the grid)
H PN ‘ P
| Light > | Electricity
“  heat " generation

11 additional CSP towers would be necessary to supply electricity for each
tower supplying exclusively heat for H, production

—> No process-level integration of H, production and CSP

Case 1 looks very similar to H2A case, with heat and

electricity provided by solar energy

PEM electrolysis High-T electrolysis Metal oxide TC cycles




Sandia

High-temperature electrolysis Case 2 )t

Single tower dedicated to Hydrogen production

H,O
~850°C J
Light > Hydrogen
heat production Hydrogen
TEIectricity No excess electricity
Electricity (all thermal energy used
generation for H, production)

For Case 2, 9% of thermal energy is used directly for H, production, 91% of thermal
energy is used for electricity generation
—> Total H, production is 80,000 kg/day

» Thermal energy for electricity gen is 2650°C - Electricity generation efficiency 1
» However, cost of thermal energy collection 1

29
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Trade-off: Power generation efficiency vs. cost 7 i,
of thermal energy collection

Laboratories

12 towers (Case 1, internal electricity gen)

12 towers vs 1 tower vs H2A-like case (purchase electricity)
o $6.00 c»510.00
;;; y-\*; $9.00 Capital costs (Electricity)
*g‘; 35.00 Capital costs (Electricity) o $8.00 Thermal energy (Low-T)
o
©, %400 Thermal energy (Low-T) < 57.00 - Materials
T T $6.00 -
S %300 —— Materials S $500 - W Electricity
S M Electricity S $4.00 H Fixed O&M
E $200 ¥ Fixed O&M E $3.00 - M Capital costs (Hydrogen)
‘E $1.00 - B Capital costs (Hydrogen) é $2.00 B Thermal energy (High-T)
8 :- B Thermal energy (High-T) 8 $1.00 Electricity revenue
5000 - Electricity revenue 50.00
12 towers 1 tower Qb‘ Qb N N * o D O
(Case 1) (Case 2) B 5 c?'\’ LP'\’ r?‘\’ %05, r?? a&
Electricity price, $/kWh
Case 1 reduces cost vs Case 2 Electricity cost is the primary driver for

» Economies of scale and lower cost for the H2A case (purchased electricity)
thermal energy collection favor Case 1 > Cost of CSP vs grid electricity

« Higher power generation efficiency in determines viability of CSP cases
Case 2 is not sufficient

30
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High-temperature electrolysis Case 3 rh) i,

Utilize two towers for hydrogen production, each providing thermal energy at a

different temperature H,0

~850°C y

Light 2> Hydrogen
heat production Hydrogen

A . .
4 <565°C ™ p EIectnmty\

Light 2 : Electricity ,, Electricity to grid

heat generation (optional)

J o
v, | >600°C )\
Solar thermal energy collection is

more cost-effective at lower T Electricity generation is more efficient at higher T

—> Electricity generation efficiency increases from
42% to 48%

- 18% of thermal energy at 850°C is used to raise electrolysis T
« Excess thermal energy from first tower and all thermal energy from the second
tower is used for electricity generation

—> H, production is 160,000 kg/day 31

- High-T electrolysis -




Combining heat from multiple towers has & e,
precedent in industry

Laboratories

= eSolar has taken a modular approach for utility-scale solar power tower
thermal plants

= Total plant output is deployed in 12MW; increments for direct steam,
50MW; increments for molten salt solar fields

— Similar approach could be taken in collecting heat from multiple towers
producing H, and electricity

Source: www.eSolar.com 32
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Operation of multiple towers at two
different temperatures reduces H, cost

' W Capital costs (Electricity)

: ® Thermal energy (Low-T)
M Materials

| M Electricity

52.00 ® Fixed O&M

_ B Capital costs (Hydrogen)
B Thermal energy (High-T)

: |

" Electricit
12 towers 1 tower 2 towers eCciricity revenue
(Case 1) (Case 2) (Case 3)

Sandia
m National

Laboratories

v o wn Wu
w A G o
o ©o ©o o
© © o o©O

Contribution to H, cost, $/kg

W L
o =
o o
o o

= Case 1 remains lowest cost due to large scale and cost-effective collection of
thermal energy

= (Case 3 is preferred over Case 2 due to lower costs for thermal energy collection

33
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METAL OXIDE THERMOCHEMICAL
HYDROGEN PRODUCTION

34



Metal oxide TC cycles convert thermal =

energy to chemical energy

Concentrated
S solar heat
= Solar thermal energy is utilized e e A .

for thermal reduction of metal

) . ) : thermal reduction: : 0,
oxide particles at high T | Tro Prr —1>
N
* Thermal energy is rejected at heat | “waste”
high T (high-quality heat) i MO,s | recovery™ Mo": “heat
between reduction chamber : \/ :
and H, production H,0, 1H,

—+> H, production: ——
- Inefficiencies in heat recovery

|
|
result in “waste” heat =[S | I

MO, - MO, ; +%O;2 (thermal reduction, TR)

MO, ; +6H,0 - MO, +6H, (water splitting, WS)

5 ,
OH,0 = 50, +0H, (net reaction)

PEM electrolysis »  High-T electrolysis Metal oxide TC cycles

Sandia
National
Laboratories
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Metal oxide TC cycles convert thermal =)
energy to chemical energy

Laboratories

Concentrated
. solar heat
= Analysis was based on N L A ,
. | |
H2A assumptions | thermal reduction: :02
! >
"= Temperatures of reduction : Trw Prr :
(1500°C) and H, production | po
(1150°C) were fixed Mo, heat __f\1o,| cwaste”
. . recovery. heat
= Metal oxide: Ceria : :
A4
= 231 small 4.24 MW, towers H,O| 'H,
(vs. one large 1000 MW - H, production: ——>
tower for CSP) :
MO, - MO, ; +%O;2 (thermal reduction, TR)

MO, s +0H,0 - MO, +dH, (water splitting, WS)

5 ,
OH,0 = 50, +0H, (net reaction)

36
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Metal oxide TC cycle Case 1:
Electricity purchased from the grid

= “Waste” heat is not utilized in
the Solar Thermo-Chemical
H2A Case Study
- Case 1 is similar to H2A case

Process consumption

of electricity is a
relatively minor cost

Hydrogen
production

Vo]

Sandia
rl1 National

Laboratories

“Waste” heat

H, Grid electricity

Breakdown of costs ($2.29/kg H,) for H2A case

$0.03

B Thermal energy
B Capital costs

I Fixed O&M

M Electricity

B Materials

Source: Unpublished SNL H2A model, “Ultimate” Central
Hydrogen Production from Solar Thermo-Chemical Cycle

PEM electrolysis »  High-T electrolysis

37
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Metal oxide TC cycle Case 2: )
Internal power generation from waste heat

Laboratories

_ “Waste” heat
= Waste heat is used to generate |
. (>600°C)
power for internal use | ..
Hydrogen | | Electricity
production generation
= Electricity generation is T
sufficient to meet process power Process electricity
needs ¥ v
2

= Small excess may be sold to grid Electricity to grid

No need to purchase grid electricity, but smaller scale of power generation

reduces efficiency and increases cost compared to full-scale CSP

38
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Electricity generation from waste heat reduces

Sandia
r.h National

H, cost if electricity price is >50.07/kWh o
2 Yp :
Purchase Power (Case 1)
o $3:50 $4.00
Y $3.00 1 Capital costs (Electricity) $3.50
o $250 # Thermal energy (Low-T) £ s3.00 ——Purchase
8 52.00 » Materials ‘:; — / power
£ $1.50 § $2.50 | — \ (Case 1)
9o $1.00 B Electricity S $2.00 " —Internal power
[=T¢]
_S 20'50 ¥ Fixed O&M _.g $1.50 generation
+ 50.00 > C 2
_é $0.50 M Capital costs (Hydrogen) T s1.00 (Case 2)
g -$1.00 B Thermal energy (High-T) $0.50
O -$1.50 . 6 o b 6 e o M Electricity revenue $0.00 N (; Q') Q‘ ‘ ;
v Vv
AP AN G SR LD R S S 2 = ~ ~ " " "
Electricity price, $/kWh Electricity price, $/kWh

Internal Power Generation (Case 2)

$3.50

g | " Capital costs (Electricity) Electricity is a relatively small
. m Thermal energy (Low-T) .

= Materials cost for metal oxide TC cycles

- Benefits of internal power

$2.00
$1.50
$1.00
50.50
$0.00
-$0.50
-$1.00
-$1.50

M Electricity
M Fixed O&M

= Capital costs (Hydrogen) generation become more
= Thermal encrey ((igh-T) significant as electricity price
I Electricity revenue

exceeds $0.10/kWh

Contribution to H, cost, $/kg

3 () el Q Vv ™ © b Q
SRV O L S i )
PP P PP PR PP

Electricity price, $/kWh
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Metal oxide TC cycle Case 3:
Integration with CSP

Solar thermal energy collection is

Sandia
m National

Laboratories

= Combine excess thermal more cost-effective at lower T
energy with thermal energy \’
from a CSP tower E:c?ctricity gﬁne;‘ration is more (5650C)\
. . icient at hi T :
" Temperature of electricity :'cllen .a. Shet o i Light 2>
generation is raised E ectricity generation efficiency heat
increases from 42% to 48% \_ )
N (>600°C) )
Hydrogen Electricity
) production generation
Value of waste heat is T \_ y
amplified by integration l Process slectricity
with CSP H,
v

Electricity to grid

40
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Thought experiment: Adjacent H, and CSP plants (&

/ No integration \ (CSP—HZintegrati(m

Waste heat supplies = Waste heat is
internal power needs fed to CSP
= H, production and = Consolidated
CSP do not interact power
= Separate power generation Electricity generation
generation facilities Light(:ss"c) facility Light(5;5°0) efficiency increases
Pant heat from 42% to 48% at
L higher T
(»600°C) (565°C) (>600°C)
Hydrogen Electricity Electricity Hydrogen Electricity *All heat is converted
prod:{ction generation generation prodliction generation to electricity more
efficiently, not only heat
l Process electricity l Process electricity from H2 produ ction

H, H,
K 120 MW Electricity to grid/ \138 MW Electricity togy

CSP-H, integration increases electricity generation

by 15% (relative), with lower total capital costs

PEM electrolysis »  High-T electrolysis Metal oxide TC cycles




Waste heat from H, production has high
potential value as a CSP “feedstock”

Purchase Power (Case 1)

Sandia
rll National
Laboratories

Integrated H, + CSP (Case 3)

o
;Lf} $6.00 I Capital costs (Electricity)
‘J’; $4.00 ® Thermal energy (Low-T)
o
©, $2.00 I Materials
I
9 $0.00 M Electricity
S -$2.00 W Fixed O&M
_é -$4.00 B Capital costs (Hydrogen)
g -$6.00 B Thermal energy (High-T)
© . 6 & o Y 6 @ O I Electricity revenue
v
AP ISP S A JRPR S PN
M L M - S

Electricity price, $/kWh

$6.00 W Capital costs (Electricity)
$4.00 m Thermal energy (Low-T)
$2.00 = Materials

M Electricity
$0.00

M Fixed O&M

-52.00
3 M Capital costs (Hydrogen)

-54.00 B Thermal energy (High-T)

-$6.00 1 Electricity revenue

Contribution to H, cost, $/kg

3 o b Q v ™ © D Q
SRS AN SR G,
(_QQ ;20 ‘—P ch tQQ :QQ t.? tQQ tQQ

Electricity price, $S/kWh

Internal Power Generation (Case 2)

o

g $6.00 1 Capital costs (Electricity)
= $4.00 m Thermal energy (Low-T)
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The “optimal” MOTC cycle maximizes H, ) e,
production efficiency

Laboratories

Concentrated
. solar heat
The “optimal” case assumes - L A ]
efficient heat recovery, higher H, thermal reduction: ioz
production temperature (1150°C) T1r P T

m “Waste” heat is minimized

E——
recovery

|
|
heat | “waste”
MO,.5 MO, heat
|

A second case features lower H, |
production temperature (800°C)  Hz0 iH,

H, production: ——
and less efficient heat recovery __
L

= More “waste” heat is available

MO, -MO, , +202 (thermal reduction, TR)

MO, ; +8H,0 -»MO, +6H, (water splitting, WS)

¢] .
0H,0 — 502 +0H, (net reaction)




More “waste” heat increases electricity production () e

National
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Outline ) i

= |ntroduction
= Background
= Modeling approach
= Key assumptions
= Concentrating solar power (CSP) overview

" General comments on CSP-H, integration

= CSP-H, integration scenarios

= Conclusions and insights




A few words about uncertainty and ) e,
sensitivity of results

Laboratories

= Solar H, technologies are at an early stage of development
= Costs and performance are highly uncertain
= Detailed optimizations are premature

= The key analysis results are the set of insights regarding
favorable conditions for CSP-H, integration

= These results (insights) are robust
= |nsights are driven by inherent characteristics of processes

= Insights are unaffected by absolute H, production costs (excluding
electricity costs)




General conclusions rh) o

= Collection of solar thermal energy is a significant cost for both
CSP and solar H, production

= Heat integration is a potential strategy for improving the performance of
both CSP and H, production

= Optimal temperature of CSP is lower than that for H, production

= (CSPyields no high-T waste heat or significant material
byproducts

= Necessary to look for potential heat flows from H, production to CSP

= Electricity prices have a significant impact on the analysis
results

= From the perspective of H, production, CSP-H, integration is favored
when CSP price is lower than electricity price
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Conclusions: High-T electrolysis h s

= Arelatively small input of heat is required compared to electricity needs
= No high-T waste heat is available from H, production

" Integration of multiple towers for combined H, + electricity production is
potentially attractive
= More efficient collection and conversion of thermal energy

= Excess heat from high-T tower can be diverted to raise the efficiency of
electricity production by 15% (relative)

= Diverting high-T heat to power generation will decrease thermal energy
collection efficiency

=  Case-by-case optimization will be required to determine lowest-cost
configuration




Conclusions: Metal Oxide TC cycles ) .

= For metal oxide TC cycles, high-quality “waste” heat may be available in
larger quantities than is needed for internal electricity generation

= Electricity demand of MO TC cycles is relatively small

= |nternal electricity generation using waste heat has minimal impact for low to
moderate electricity prices

= |ntegration of MO TC cycles and separate CSP tower is potentially attractive
= |Impact of high-T waste heat is amplified by integration with CSP

= Efficiency of electricity generation could be increased by 15% (relative)
—> Waste heat from H, production has high potential value as CSP feedstock

= Future metal oxide TC cycles assume reductions in inert material, high
recuperation of high-T heat

= Current metal oxide TC cycles may generate significantly more waste heat
- Increased potential for electricity revenue as a bridge to future development
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