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Hydrogen, heat, and electricity provide 
links between energy sources 
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H2 

Introduction of hydrogen 

increases the operational 

flexibility of future low 

carbon energy systems 

Background Approach Assumptions CSP overview CSP-H2 integration 



Hydrogen, heat, and electricity provide 
links between energy sources 
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H2 

Focus of the current analysis: Hydrogen and electricity 

production from solar energy in the form of heat 

Background Approach Assumptions CSP overview CSP-H2 integration 

Image: BrightSource Limitless 

Image: flickr (Creative Commons license) 



Hydrogen, heat, and electricity provide 
links between energy sources 
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H2 

Background Approach Assumptions CSP overview CSP-H2 integration 

Analysis Goal: Explore pathways for 

integrating concentrating solar power 

(CSP) and solar hydrogen production 

 Do synergies exist that could 

reduce costs? 

 
Analysis Scope: Process-level 

integration of CSP and H2 production 

• No consideration of H2 for energy 

storage 

• No transportation/geographical 

considerations (e.g., benefits of co-

locating H2 production near H2 users)   

 



Modeling approach leverages previous 
analyses of CSP and H2 production 
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Background Approach Assumptions CSP overview CSP-H2 integration 

Objectives: 

 Identify important performance drivers and fundamental conditions 
that favor CSP-H2 integration (NOT process optimization) 

Understand key uncertainties and ensure robustness of conclusions 

Key relationships were extracted 

and represented in a simplified 

Excel-based model 

CSP H2 Production 

DOE H2 production models 
Discounted cash flow analysis 

based on conversion efficiency and 
capital, O&M, and materials costs  

Output is cost of H2 per kg  

Published reports / models 
developed at Sandia 
Power conversion calculations and 

reliability analysis  

Capital and O&M cost estimates               

 Levelized cost of electricity (LCOE) 

Cost reduction / performance targets 



Assumptions: Process performance and costs 
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Background Approach Assumptions CSP overview CSP-H2 integration 

H2 Production: Process configurations and costs 

taken directly from DOE H2 Analysis (H2A) models 

 “Future Central Hydrogen Production”                           

(start-up year: 2025-2030) 

CSP: Process configurations and 

costs taken directly from DOE and 

National Laboratory reports 

 SunShot target costs (2020) 

For both H2 production and CSP, assumptions are based on future systems  



 Current electricity prices1: 

 CA: $0.13/kWh retail (industrial), ~$0.04/kWh wholesale 

 AZ: $0.07/kWh retail (industrial), ~$0.03/kWh wholesale 

 Recent analysis shows solar PV Power Purchase Agreements (PPA) reaching    
grid parity (after incentives) 

 

 

 

 

 
 However, several factors could lead to higher electricity prices 

 Potential increases in natural gas prices (share of electricity generation is rising) 

 Renewables Portfolio Standards (RPS), Cap and Trade, US EPA’s Clean Power Plan, etc.         
 Could increase the price of renewable power 

 As penetration of wind and PV ↑, storage capability of CSP could command a premium  

 

Assumptions: Future electricity prices 

11 1Source: EIA 

Background Approach Assumptions CSP overview CSP-H2 integration 

Ivanpah 

Source: Bolinger & Seel, “Utility-Scale Solar 2014: An 

Empirical  Analysis of Project Cost, Performance, and Pricing 

Trends in the United States,” LBNL-1000917, September 2015 



 Future electricity prices (2020-2030) are highly uncertain  Parameterize 

 

 

 

 
 
 

 

 Assume H2 plant could purchase electricity at same price that a CSP plant 
could sell electricity 

 Assume CSP and H2 production facilities owned by same entity  

 H2 is the primary product  account for electricity revenue in H2 cost 

 

 

Assumptions: Future electricity prices 
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Background Approach Assumptions CSP overview CSP-H2 integration 

Hydrogen 

production 

Electricity 

(purchased) 

CSP       

plant 

Electricity 

(sold) 

Hydrogen 

Assume 

same price 

𝐻2 𝑐𝑜𝑠𝑡 =
𝑎𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑤𝑖𝑡ℎ 𝑒− 𝑔𝑒𝑛 + 𝑂&𝑀 𝑐𝑜𝑠𝑡 𝑤𝑖𝑡ℎ 𝑒− 𝑔𝑒𝑛 − 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑟𝑒𝑣𝑒𝑛𝑢𝑒

𝑎𝑛𝑛𝑢𝑎𝑙 𝐻2 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑒− 𝑔𝑒𝑛 𝑝𝑙𝑎𝑛𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑤𝑖𝑡ℎ 𝑒− 𝑔𝑒𝑛
 



Concentrating solar power (CSP) 
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Baseline CSP plant: Power Tower configuration with molten salt 

thermal storage and subcritical Rankine cycle electricity generation 

      2010 Sandia estimate: $0.15/kWh; SunShot goal: $0.06/kWh 

 Heliostats (mirrors with 2-axis 
directional control) reflect sunlight 
onto a solar receiver 

 Heat is absorbed by a working fluid 
and transferred to an electricity 
generation unit (storage optional) 

 Approximate capital cost               
breakdown: 
 Heliostats: 30-40% 

 Solar receiver: 20-25% 

 Storage: 20-25%  

 Electricity gen: 15-20% 

Solar receiver 

Heliostat 

field 

Thermal storage 

Electricity 

generation 

Source: Sandia (Joe Florez) 

Background Approach Assumptions CSP overview CSP-H2 integration 



Define major CSP units for analysis 
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Electricity generation 

Light  Heat Solar receiver 

Heliostat 

field 

Thermal storage 

Light  

heat 
Electricity 

generation 
Electricity 

to grid 

 Collection of light and 
conversion to thermal 
energy   (Light  Heat) 

 Heliostat field 

 Solar receiver 

 Thermal storage 

 

 Electricity generation 

 Steam generator 

 Turbine 

 Cooling towers 

Background Approach Assumptions CSP overview CSP-H2 integration 
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Heat “quality” is defined by: 
- Temperature 

- Availability (storage) 

Heliostat 

field 
Solar 

Receiver 

Thermal 

storage 

Solar thermal energy “feedstock” 

is a major cost;                        

Cost rises with temperature 

Heat can be treated as a “feedstock” 

Receiver losses ↑ as T ↑ 

Background Approach Assumptions CSP overview CSP-H2 integration 
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Receiver Temperature 

However, higher T allows more efficient production of electricity or H2 

 Sandia analysis: Optimal T for CSP is ~565°C 



Goal: Investigate opportunities for 
integrating H2 production and CSP processes 
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Light  

heat 

Hydrogen 

production 
Hydrogen 

H2O 

Electricity 

Electricity 

generation 
Electricity 

to grid 

H2A analyses assume purchase of grid electricity                                                 

 Current analysis considers co-production of electricity (CSP)    
 

Key question to ask for each process: Are there potential synergies between 

the processes which would favor co-location of CSP and H2 production?  

- Waste heat streams 

- Byproducts  Feedstocks 

Thermal energy is a major cost  Focus on heat streams for CSP-H2 integration 

Background Approach Assumptions CSP overview CSP-H2 integration 



CSP yields few byproducts 
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Background Approach Assumptions CSP overview CSP-H2 integration 

Look to H2 production processes for integration opportunities 

Electricity generation cycles feature efficient 

internal heat integration                                              

 Waste heat exiting system is of low quality 

 

Water serves as working fluid in closed cycles            

 No significant material waste streams 

Steam 

generator 

Condenser 

Pump Turbine 

Low-T salt High-T salt 

Electricity 

Heat is rejected at 

~40°C-60°C 
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Three scenarios were analyzed 
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1. Baseline: CSP electricity coupled with polymer electrolyte 
membrane (PEM) electrolysis (low-T)  

 

2. Elevated temperature (850°C) electrolysis integrated with a 
CSP plant 

 

3. High temperature (1380°C) metal oxide thermochemical (TC) 
H2 production integrated with a CSP plant 



Thermal energy input varies by process  

 High-T electrolysis leverages a relatively small amount of thermal energy 
to significantly increase efficiency of H2 production 

 Thermochemical metal oxide (TC) cycles convert larger amounts of 
thermal energy directly to chemical energy 

 Electricity is required to drive equipment, etc.   
20 

Hydrogen production costs 

 Thermal energy 

 Capital costs 

 Fixed O&M costs 

 Electricity cost 

 Materials costs 
 

Data sources:                                 
H2A models of H2 production 

High TRL 

Low-to-mid 

TRL 

Very low 

TRL 
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BASELINE CASE: PEM ELECTROLYSIS 
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 Main inputs are water and electricity  No heat inputs 

 Electrolyzer stack, power electronics, and H2 gas management 
system account for most of capital costs (~70%) 

PEM electrolysis case assumes no integration 
of H2 production and electricity generation 
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Image Source:  James et al., PEM Electrolysis H2A Production Case Study Documentation, 

Grant DE-EE0006231, Arlington, VA, December 31, 2013. 

  

PEM electrolysis High-T electrolysis Metal oxide TC cycles 



Electricity costs dominate for PEM electrolysis 

 H2 production via PEM electrolysis requires low-cost electricity 
 Using 2010 SNL estimate of CSP costs ($0.15/kWh), H2 cost is $8-10/kg 

 Using SunShot target ($0.06/kWh), H2 cost is $3.75-$5/kg 
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Source:  James et al., PEM Electrolysis H2A Production Case Study 

Documentation, Grant DE-EE0006231, Arlington, VA, December 31, 2013. 
Results from H2A model of Hydrogen Production from PEM Electrolysis . 

Blue = Electricity cost 

Sunshot 

2010 SNL 

estimate 

PEM electrolysis High-T electrolysis Metal oxide TC cycles 



HIGH-T ELECTROLYSIS 
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High-T electrolysis uses thermal energy 
to increase efficiency 

 Thermal energy is used to raise the 
temperature of electrolysis              

  A portion of electrolysis energy 
can be supplied as heat 

 

 Heat input is relatively low:                   
6.8 kWhT / kg H2, versus         
electricity input of 33.2 kWhe / kg H2 
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Hydrogen 

production 
Hydrogen 

H2O 

Grid electricity 

H2A analyses assume 

heat is supplied by a 

nuclear reactor* 

Breakdown of costs ($2.93/kg H2) for H2A case  

PEM electrolysis High-T electrolysis Metal oxide TC cycles 

Heat 

*Forthcoming H2A case will not specify source of thermal energy 

Source: Future Central Hydrogen Production from Nuclear 

Energy via High Temperature Electrolysis, H2A Case Study 



Current analysis assumes solar thermal energy 

 Assume solar receiver(s) with 340 MWT output  
 Total amount of heat available is similar to H2A case 

 Solid particle receivers provide heat at ~850°C 
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Light  

heat 

Hydrogen 

production 
Hydrogen 

H2O 

CSP Electricity 

PEM electrolysis High-T electrolysis Metal oxide TC cycles 

~850°C 



Current analysis assumes solar thermal energy 

 Assume solar receiver(s) with 340 MWT output  
 Total amount of heat available is similar to H2A case 

 Solid particle receivers provide heat at ~850°C 
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Light  

heat 

Hydrogen 

production 
Hydrogen 

H2O 

CSP Electricity 

PEM electrolysis High-T electrolysis Metal oxide TC cycles 

Waste heat   

(70-90°C) 

~850°C 

 Electricity consumption is high 

 Process yields low-T waste heat 

 

Key Factors: 



High-temperature electrolysis Case 1  
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Light  

heat 

Hydrogen 

production 
Hydrogen 

H2O 

Electricity (through the grid) 

Electricity 

generation 

11 additional CSP towers would be necessary to supply electricity for each 

tower supplying exclusively heat for H2 production 
 

 No process-level integration of H2 production and CSP 

Light  

heat 
Electricity 

generation 
Light  

heat 
Electricity 

generation 
Light  

heat 

Single tower dedicated to providing thermal energy, multiple additional CSP 

towers to provide electricity 

Case 1 looks very similar to H2A case, with heat and 

electricity provided by solar energy 

PEM electrolysis High-T electrolysis Metal oxide TC cycles 

~850°C 

565°C 



High-temperature electrolysis Case 2 
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Light  

heat 

Hydrogen 

production 
Hydrogen 

H2O 

Electricity 

Electricity 

generation 

For Case 2, 9% of thermal energy is used directly for H2 production, 91% of thermal 

energy is used for electricity generation 

 Total H2 production is 80,000 kg/day 

 

• Thermal energy for electricity gen is ≥650°C  Electricity generation efficiency ↑ 

• However, cost of thermal energy collection ↑ 

 

Single tower dedicated to Hydrogen production  

PEM electrolysis High-T electrolysis Metal oxide TC cycles 

~850°C 

No excess electricity        
(all thermal energy used 

for H2 production) 



Trade-off: Power generation efficiency vs. cost 
of thermal energy collection 
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12 towers vs 1 tower 
12 towers (Case 1, internal electricity gen) 

vs H2A-like case (purchase electricity) 

Case 1 reduces cost vs Case 2 

• Economies of scale and lower cost for 

thermal energy collection favor Case 1 

• Higher power generation efficiency in 

Case 2 is not sufficient 

PEM electrolysis High-T electrolysis Metal oxide TC cycles 

Case 1 

Electricity cost is the primary driver for 

the H2A case (purchased electricity) 

 Cost of CSP vs grid electricity 

determines viability of CSP cases 
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High-temperature electrolysis Case 3 
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Light  

heat 

Hydrogen 

production 
Hydrogen 

H2O 

Electricity 

Utilize two towers for hydrogen production, each providing thermal energy at a 

different temperature 

Electricity 

generation 
Light  

heat 

Electricity to grid 

(optional) 

~850°C 

<565°C 

>600°C  

• 18% of thermal energy at 850°C is used to raise electrolysis T 

• Excess thermal energy from first tower and all thermal energy from the second 

tower is used for electricity generation 

      H2 production is 160,000 kg/day 

 
PEM electrolysis High-T electrolysis Metal oxide TC cycles 

Solar thermal energy collection is 
more cost-effective at lower T Electricity generation is more efficient at higher T                        

 Electricity generation efficiency increases from 

42% to 48%  



Combining heat from multiple towers has 
precedent in industry  

 eSolar has taken a modular approach for utility-scale solar power tower 
thermal plants 
 

 Total plant output is deployed in 12MWT increments for direct steam, 
50MWT increments for molten salt solar fields  

 Similar approach could be taken in collecting heat from multiple towers 
producing H2 and electricity 

32 
Source: www.eSolar.com 

PEM electrolysis High-T electrolysis Metal oxide TC cycles 



Operation of multiple towers at two 
different temperatures reduces H2 cost 

 Case 1 remains lowest cost due to large scale and cost-effective collection of 
thermal energy 

 Case 3 is preferred over Case 2 due to lower costs for thermal energy collection 
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PEM electrolysis High-T electrolysis Metal oxide TC cycles 
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METAL OXIDE THERMOCHEMICAL 
HYDROGEN PRODUCTION 

34 



Metal oxide TC cycles convert thermal 
energy to chemical energy 
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 Solar thermal energy is utilized 
for thermal reduction of metal 
oxide particles at high T 

 

 Thermal energy is rejected at 
high T (high-quality heat) 
between reduction chamber 
and H2 production                                         

 Inefficiencies in heat recovery 
result in “waste” heat 

PEM electrolysis High-T electrolysis Metal oxide TC cycles 



Metal oxide TC cycles convert thermal 
energy to chemical energy 
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 Analysis was based on 
H2A assumptions 
 Temperatures of reduction 

(1500°C) and H2 production 
(1150°C) were fixed 

 Metal oxide: Ceria 

 231 small 4.24 MWT towers                   
(vs. one large 1000 MWT  
tower for CSP) 

 

PEM electrolysis High-T electrolysis Metal oxide TC cycles 



Metal oxide TC cycle Case 1:                             
Electricity purchased from the grid 
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Hydrogen 

production 

 “Waste” heat is not utilized in 
the Solar Thermo-Chemical 
H2A Case Study                          
 Case 1 is similar to H2A case 

Breakdown of costs ($2.29/kg H2) for H2A case  

“Waste” heat 

Process consumption   

of electricity is a 

relatively minor cost 

PEM electrolysis High-T electrolysis Metal oxide TC cycles 

Source: Unpublished SNL H2A model, “Ultimate” Central 

Hydrogen Production from Solar Thermo-Chemical Cycle  

Grid electricity H2 



Process electricity 

Electricity 

generation 

Metal oxide TC cycle Case 2:                    
Internal power generation from waste heat 
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 Waste heat is used to generate 
power for internal use 

 

 Electricity generation is 
sufficient to meet process power 
needs  

 Small excess may be sold to grid 

 

 

(>600°C) 

No need to purchase grid electricity, but smaller scale of power generation 

reduces efficiency and increases cost compared to full-scale CSP 

Electricity to grid 

PEM electrolysis High-T electrolysis Metal oxide TC cycles 

Hydrogen 

production 

“Waste” heat 

H2 



Electricity generation from waste heat reduces 
H2 cost if electricity price is >$0.07/kWh 
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Electricity is a relatively small 

cost for metal oxide TC cycles  

 Benefits of internal power 

generation become more 

significant as electricity price 

exceeds $0.10/kWh  

PEM electrolysis High-T electrolysis Metal oxide TC cycles 

Internal Power Generation (Case 2) 

Purchase Power (Case 1) 
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Metal oxide TC cycle Case 3: 
Integration with CSP 
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Solar thermal energy collection is 
more cost-effective at lower T 

 

Electricity generation is more 
efficient at higher T                        

 Electricity generation efficiency 

increases from 42% to 48%  

Electricity to grid 

(565°C) 

(>600°C) 

PEM electrolysis High-T electrolysis Metal oxide TC cycles 

Light  

heat 

Electricity 

generation 

(565°C) 

Hydrogen 

production 

 Combine excess thermal      
energy with thermal energy   
from a CSP tower  

 Temperature of electricity 
generation is raised 

 

Value of waste heat is 

amplified by integration 

with CSP 
Process electricity 

H2 



Thought experiment: Adjacent H2 and CSP plants 
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PEM electrolysis High-T electrolysis Metal oxide TC cycles 

No integration CSP-H2 integration 

 Waste heat supplies 
internal power needs  

 H2 production and 
CSP do not interact 

 Separate power 
generation facilities 

 Waste heat is 
fed to CSP 

 Consolidated 
power 
generation 
facility 

CSP-H2 integration increases electricity generation                           

by 15% (relative), with lower total capital costs 

120 MW 138 MW 

Electricity generation 
efficiency increases 

from 42% to 48% at 
higher T 

*All heat is converted 

to electricity more 

efficiently, not only heat 

from H2 production 



Waste heat from H2 production has high 
potential value as a CSP “feedstock”  
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PEM electrolysis High-T electrolysis Metal oxide TC cycles 

Internal Power Generation (Case 2) 

Purchase Power (Case 1) Integrated H2 + CSP (Case 3) 
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The “optimal” MOTC cycle maximizes H2 
production efficiency  

 The “optimal” case assumes 
efficient heat recovery, higher H2 
production temperature (1150°C) 
 “Waste” heat is minimized 

 

 A second case features lower H2 
production temperature (800°C) 
and less efficient heat recovery 
 More “waste” heat is available 

43 

“waste” 

heat 



More “waste” heat increases electricity production 

44 

“Optimal” process More “waste” heat 

Larger thermal energy input, 

higher capital costs 

 Higher H2 production cost  

PEM electrolysis High-T electrolysis Metal oxide TC cycles 

Purchase 

Power 

(Case 1) 

Internal 

Power 

Generation 

(Case 2) 

Integrated 

H2 + CSP 

(Case 3) 

Larger thermal energy input and 

higher capital costs (H2 & electricity),  

But increased electricity revenue 

Solid lines: “Optimal” case;  

Dashed lines: More “waste” heat 
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A few words about uncertainty and 
sensitivity of results 

 Solar H2 technologies are at an early stage of development 
 Costs and performance are highly uncertain 

 Detailed optimizations are premature 

 The key analysis results are the set of insights regarding 
favorable conditions for CSP-H2 integration 

 These results (insights) are robust  
 Insights are driven by inherent characteristics of processes  

 Insights are unaffected by absolute H2 production costs (excluding 
electricity costs) 
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General conclusions 
 Collection of solar thermal energy is a significant cost for both 

CSP and solar H2 production 
 Heat integration is a potential strategy for improving the performance of                          

both CSP and H2 production 

 Optimal temperature of CSP is lower than that for H2 production 

 

 CSP yields no high-T waste heat or significant material 
byproducts 
 Necessary to look for potential heat flows from H2 production to CSP 

 

 Electricity prices have a significant impact on the analysis 
results 
 From the perspective of H2 production, CSP-H2 integration is favored 

when CSP price is lower than electricity price 
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Conclusions: High-T electrolysis 

 A relatively small input of heat is required compared to electricity needs 

 No high-T waste heat is available from H2 production  

 

 Integration of multiple towers for combined H2 + electricity production is 
potentially attractive 

 More efficient collection and conversion of thermal energy 

 Excess heat from high-T tower can be diverted to raise the efficiency of 
electricity production by 15% (relative) 

 Diverting high-T heat to power generation will decrease thermal energy 
collection efficiency 

 Case-by-case optimization will be required to determine lowest-cost 
configuration 
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Conclusions: Metal Oxide TC cycles 
 For metal oxide TC cycles, high-quality “waste” heat may be available in 

larger quantities than is needed for internal electricity generation 

 Electricity demand of MO TC cycles is relatively small  

 Internal electricity generation using waste heat has minimal impact for low to 
moderate electricity prices 

 

 Integration of MO TC cycles and separate CSP tower is potentially attractive 

 Impact of high-T waste heat is amplified by integration with CSP  

 Efficiency of electricity generation could be increased by 15% (relative)            
 Waste heat from H2 production has high potential value as CSP feedstock 

 

 Future metal oxide TC cycles assume reductions in inert material, high 
recuperation of high-T heat  

 Current metal oxide TC cycles may generate significantly more waste heat         
 Increased potential for electricity revenue as a bridge to future development   
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Question and Answer 

 Please type your questions 
into the question box 
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Thank You 
 

  

Presenter:  Scott Paap (smpaap@sandia.gov) 

 

DOE Host: Eric Miller (Eric.Miller@ee.doe.gov) 

 

 

Webinar Recording and Slides: 

(http://energy.gov/eere/fuelcells/webinars) 

 

Newsletter Signup 

(http://energy.gov/eere/fuelcells/subscribe-news-and-financial-

opportunity-updates) 
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