Biomass: Wood as Energy

Bureau of Indian Affairs Tribal Providers Conference

> Anchorage, Alaska 2 December 2015

Daniel J. Parrent R10 Biomass & Forest Stewardship Coordinator

> USDA Forest Service State & Private Forestry

Alaska's Forest Resources

Alaska has extensive forest resources:

* approximately 120 million acres of forest land
* approximately 3 million cords of wood grown annually
* wildfires average 1-2 million acres annually (range is 500,000 to 6.2 million; 2015 was 2nd worst @ 5+ million)

Alaskans burn approximately 100,000 cords annually for heat

Benefits of forest management:

- * reduce risk and severity of wildfires
- * utilize trees killed by insects, disease and fire
- * enhance/restore wildlife habitat and forest health

Modern Woody Biomass

Sources:

Forest thinnings Logging slash Sawmill residues Land clearing C&D, MSW, dunnage

Forms:

Hog fuel Cordwood Fuel logs / briquettes Chips Pellets

Advantages and Disadvantages of Woody Biomass Fuels and Boilers

<u>Advantages</u>

Renewable Carbon neutral and sulfur free Local in origin (supports local economy and creates jobs) Low-grade or waste material Price stability Saves money

Disadvantages

Bulky; requires considerable on-site storage
More difficult to deliver & convey
Non-uniform, inconsistent (compared to oil, gas, electricity)
High system capital costs
Operational learning curve
Requires some attention daily, weekly
Not always well-suited for "shoulder" seasons or "peak" demand

HELE Woody biomass boiler systems reliably meet State and Federal clean air standards

Characteristics of Wood Fuels

	Advantages	Disadvantages
Cordwood Slabwood	Readily available Low cost (generally) Dry-able; Btu/lb variable	Requires manual fuel delivery & stoking
Pellets	Meter easily; easy to convey Dry; High Btu/lb	Limited availability High cost
Chips Hog fuel	Lowest cost (generally) Automated delivery possible	Availability ??? Wet; generally not dry-able Lowest Btu/lb

Sizing The Heating System

Major System Types

- Type I. <u>Manual</u> Fuel Delivery
- FUEL: Cordwood, slabwood, briquettes
- **<u>COST</u>**: Lowest-Cost Option (usually)
- APPLICATION: most suitable for mediumsized facilities; scalable to larger facilities; can also be used residentially

FUELS FOR MANUAL SYSTEMS

High efficiency, low emission (HELE) Manual, stick-wood boiler systems

Major System Types

Type II. <u>Automatic</u> Fuel Delivery

FUEL: "Meter-able" fuels (pellets, chips, hog fuel, cubes, pucks)

COST: Higher/Highest initial investment cost

APPLICATION: Suitable for residential (pellets), medium and large facilities

FUELS FOR AUTOMATIC SYSTEMS

Meter-able fuel systems generally consist of a fuel storage bunker or silo, fuel conveyances (augers, conveyor belts), metering bin (not labeled), fire-box, boiler, and exhaust system. Very large systems may incorporate automatic ash removal capabilities and particulate emissions controls.

This schematic diagram of a wood pellet system shows the components of a typical biomass boiler system including a place to store the fuel, equipment to move it to the boiler and equipment to manage the byproducts — ash and combustion gases. *courtesy SolaGen Inc.*

Pellets are typically delivered like fuel oil and are stored in silos. Chips and hog fuel are generally delivered by dump trucks or walkingfloor trailers

Fuel is stored in bunkers, bins or silos and moved to the firebox *automatically* by augers and/or belt conveyors

Semi-automatic systems achieve some cost savings by using on-grade fuel storage (instead of below grade), and

... typically use a small frontend loader, tractor or skidsteer (Bobcat) to load a day's worth of fuel into a "day bin."

There is a trade off between initial investment cost and annual operating cost.

<u>Chip- and hog fuel-fired systems</u> are more expensive to build and install than pellet-fired systems, and are most appropriate in larger applications. Relatively speaking, the fuel is generally lowest in cost. And while dry fuel is better than wet fuel, chips and hog fuel will not physically deteriorate if they get wet, as do pellets.

Economics 101

"Simple Payback Period (SPP)" is a Simple Measure of Cost Effectiveness

(PV, NPV, IRR, and LCCA are more detailed financial analysis tools)

Simple Payback = <u>Total Project Cost</u> Annual Fuel Cost Savings

- "No-Brainer" Highly feasible
- Medium Payback
- Long-term investment

- SPP -- 5 years or less
- SPP -- 5 to 10 years
- SPP -- 10 to 15 years
- SPP -- 15+ years

Most facilities realize a 25 to 50% reduction in annual fuel costs

Daniel J. Parrent

R10 Biomass & Forest Stewardship Coordinator USDA Forest Service, State & Private Forestry 161 East 1st Ave, Anchorage, AK 99501 Tel: (907) 743-9467 E-mail: djparrent@fs.fed.us