

Alaska Energy Authority

AEA Hydroelectric Program

Daniel Hertrich, PE

BIA Providers Conference, December, 2015

Alaska Energy Authority: Mission

"To Reduce the Cost of Energy in Alaska"

- AEA is an independent and public corporation of the State of Alaska
- Created by the Alaska Legislature in 1976
- 44.83.070: "The purpose of the Authority is to promote, develop, and advance the general prosperity and economic welfare of the people of the state by providing a means of financing and operating power projects and facilities that recover and use waste energy and by carrying out the powers and duties assigned to it under AS 42.45."

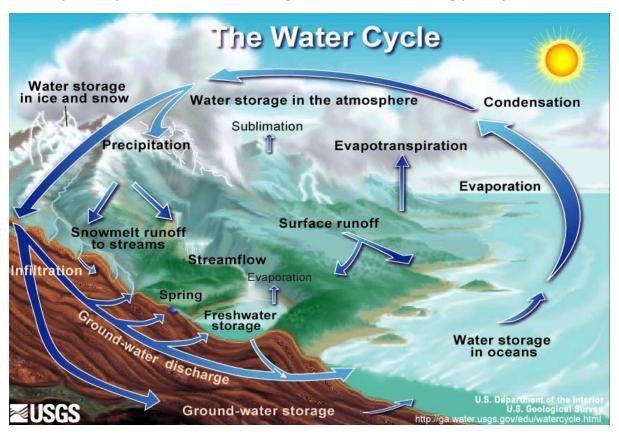
AEEE/REF/PPF – Daniel Hertrich

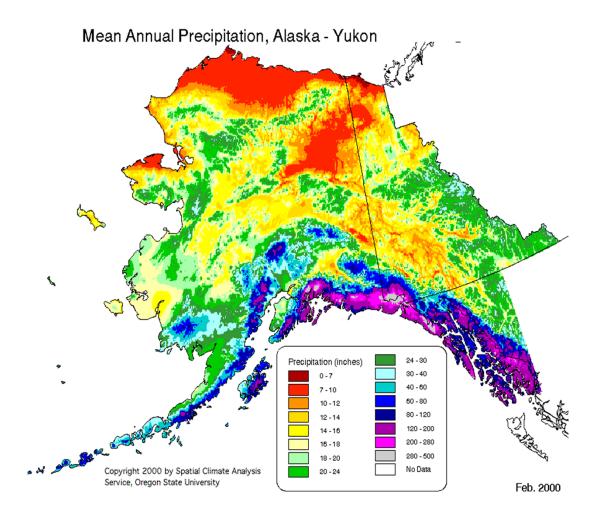
Bradley and Snettisham – Bryan Carey

Susitna-Watana – Wayne Dyok

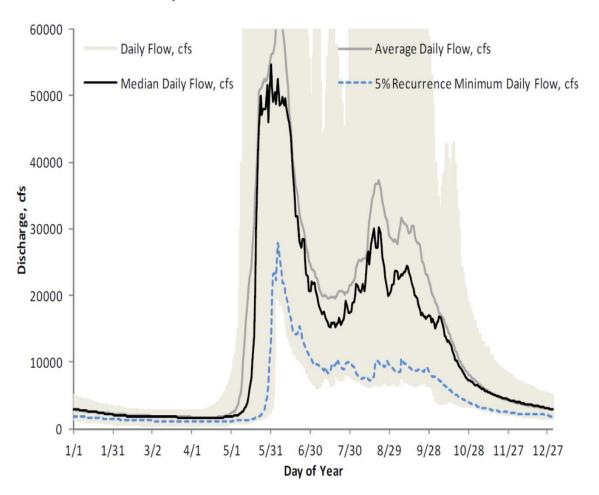
Focusing on Communities

- Emphasizing community-based approach to projects
- Technical assistance, regional planning and project management
- Provide synergy between planning, projects and funding sources
- Assist communities to move to project-ready status


AEA Hydro divisions

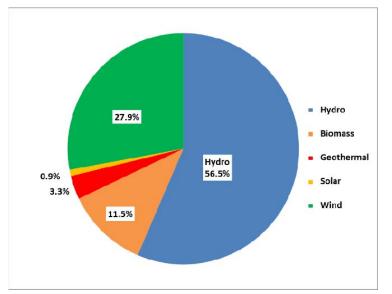

- Alternative Energy and Efficiency program (includes support for Renewable Energy Grant Fund and Power Project Loan Fund)
- Bradley Lake and Snettisham Projects (AEA owned hydros)
- Susitna-Watana hydro project

What Nature Gives Us

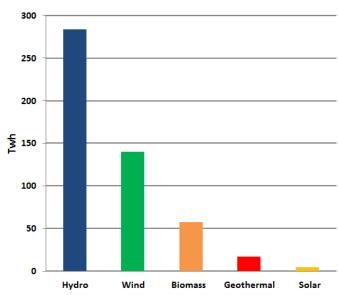

Hydro power is the original solar energy capture

Hydroelectric Energy Generation

Exhibit 4-2: Daily Flow Chart for USGS 157444500 KOBUK R NR KIANA AK


Determining energy generation from water resource

 Develop hydrograph from stream gauging data collection



Hydropower is the Foundation of Renewables in the U.S.

EIA Generation data from 2012

Renewable Generation (Twh)

How Hydroelectric Power Is Captured

- Elevation difference creates head pressure and water motion.
- Created by natural geography, or by dams.

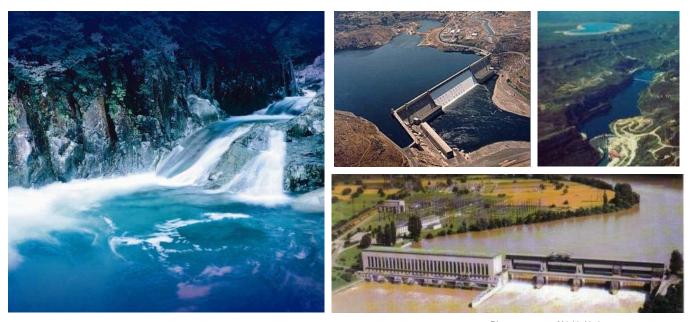
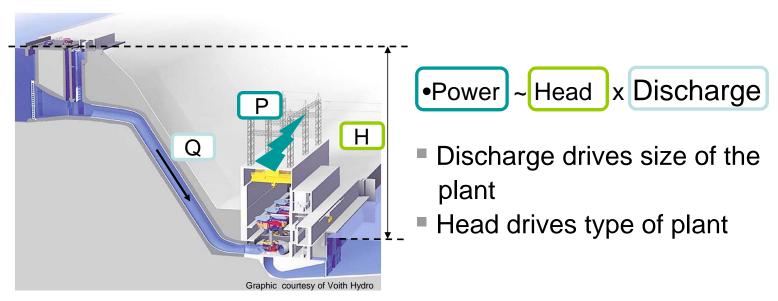
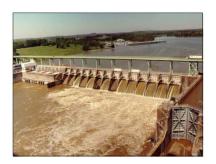



Photo courtesy of Voith Hydro

How Hydroelectric Power Is Captured

- Elevation difference (head) creates the water flow
- Turbines are used to convert hydro into electrical energy



- Projects generally fall into 2 types
 - Run of River (no storage)
 - Storage

Multi-Purpose Uses

• Dams and Reservoirs provide other attributes than power

Flood control

Navigation

Drought Mitigation

Irrigation

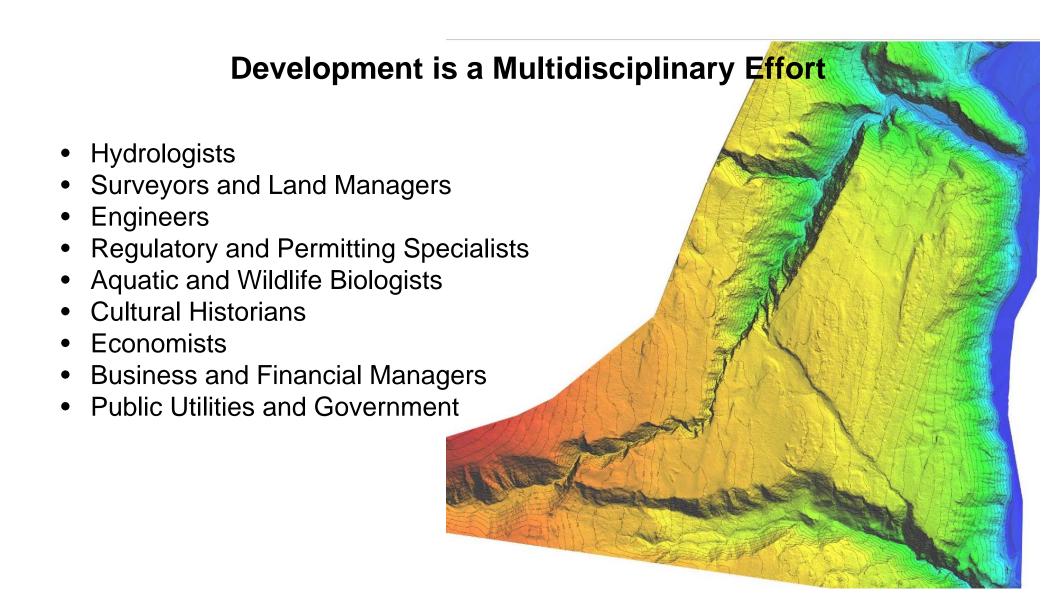
Recreation

Hydroelectric Project – What is it Typically?

Hydroelectric Development

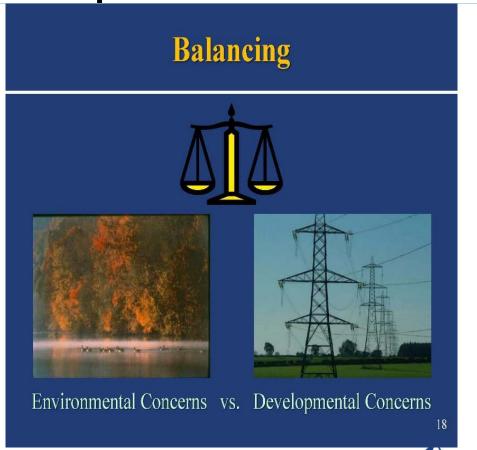
- Every project is different. There is no standard infrastructure unlike wind turbines, gas turbines, and diesel power plant developments
- Significant data collection, planning, and permitting effort required
- High up front cost with very low operational cost
- One consistency is that they are fixed installations with usually only minor changes in infrastructure and operational changes over time

Factors Affecting the Utilization of a Hydroelectric Resource


Typical influencing factors affecting the utilization of a

hydroelectric resource:

- Water supply
- Topography
- Geology
- Winter and ice conditions
- Regulations and land use
- Supporting infrastructure
- Need for power and the cost of alternatives
- Funding, planning, and project management


Balancing Resources in Hydroelectric Development

Analyze the impacts to resources from two perspectives:

1. The impact the development has on fishery resources.

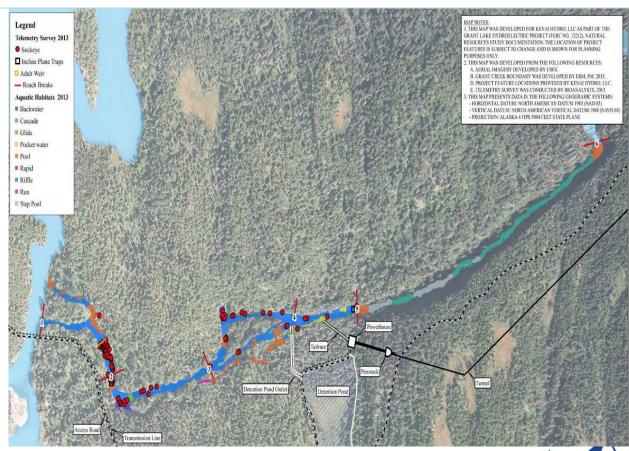
and conversely

2. The impact the fishery resources have on the development.

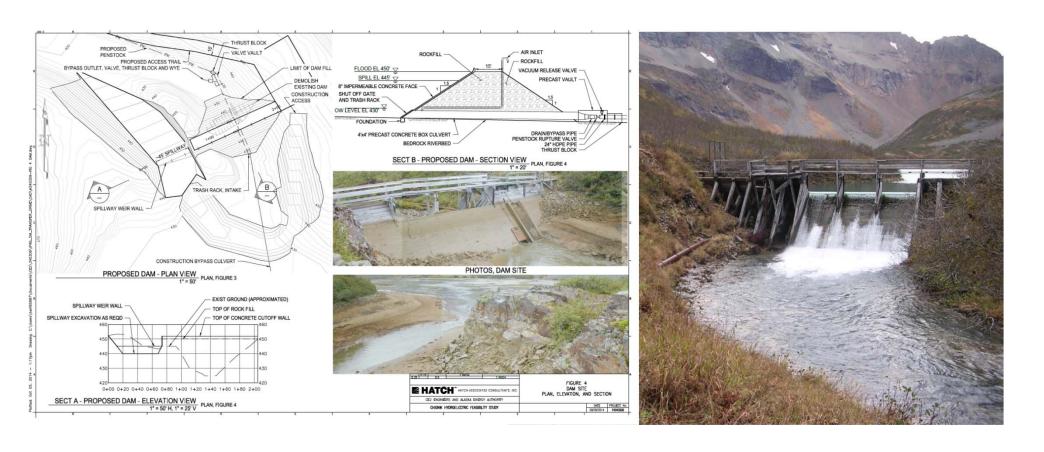
Examples of Projects in Development – Grant Lake

Fish Resource

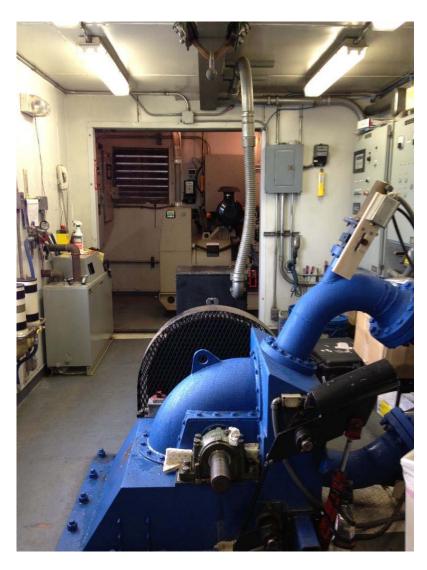
 Investigations – snorkeling and trapping



Examples of Projects in Development – Grant Lake


Fish Resource

Radio telemetry results



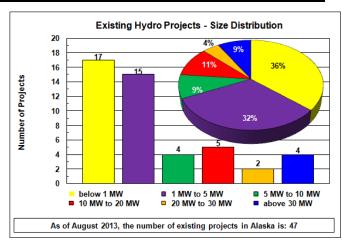
Chignik hydro replacement

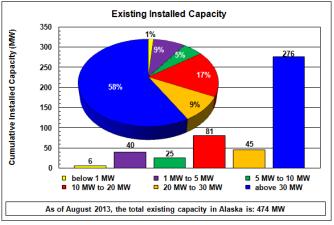
Akutan

Allison

Blue lake

Chignik Lagoon


Existing Hydropower in Alaska


Alaska's Average Electrical Energy Make-up, 2011								
Oil	Gas	Coal	Hydro	Wind				
15.6%	57.8%	5.9%	20.3%	0.3%				

- 20% of Alaska's electrical energy comes from hydropower
- 68% of sites have a capacity below 5 MW
- 58% of total capacity is from 4 sites with greater than 30 MW capacity

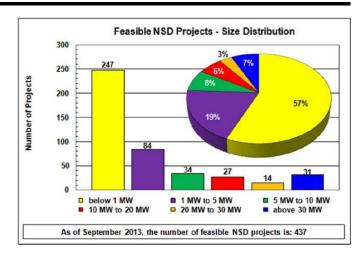
Number of Existing Projects: 47

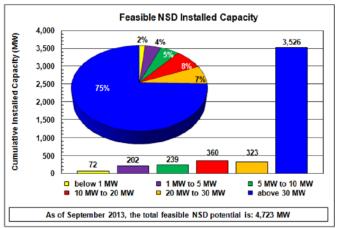
Total Installed Capacity: 474 MW

Renewable Energy Fund Round 9 Hydro Applications

20 Hydroelectric and 2 hydrokineti	Total Cost for	Total Cost			
		Grant Fund		Requested	Through
Project Name	Applicant Phases	Request	Total Match	Phases	Construction
Igiugig RivGen® Power System Commercial Project	Construction	\$1,490,077	\$641,663	\$2,131,740	\$2,131,740
Elfin Cove Hydroelectric Permitting	Design	\$88,000	\$22,000	\$110,000	\$3,835,000
Indian River Hydroelectric Project - Construction	Construction	\$809,000	\$1,115,280	\$1,924,280	\$2,298,280
Chignik Hydroelectric Dam Project	Design	\$1,025,175	\$60,251	\$1,085,427	\$7,200,000
Hydro Power Generator Adak	Construction	\$294,102	\$126,044	\$420,146	\$420,146
Gunnuk Creek Hydro Rehabilitation - IPEC Kake	Construction	\$3,920,000	\$1,545,000	\$5,465,000	\$5,795,000
Ouzinkie Hydroelectric Power Project	Construction	\$397,427	\$4,014	\$401,441	\$401,441
West Creek Hydroelectric Project	Recon	\$320,000	\$25,000	\$345,000	
Scammon Bay Hydroelectric Project	Feasibility	\$305,000	\$3,050	\$308,050	\$4,114,132
Fivemile Creek Hydroelectric Project	Construction	\$3,400,000	\$2,600,000	\$6,000,000	\$6,580,000
Grant Lake Hydroelectric Project	Design	\$4,000,000	\$875,528	\$4,875,528	\$59,067,808
Old Harbor Hydroelectric Project â^'Geotechnical Study and Final Design	Design	\$1,092,500	\$57,500	\$1,150,000	\$10,317,500
Waterfall Creek Hydroelectric Construction Project	Construction	\$675,000	\$5,525,000	\$6,200,000	\$6,950,000
False Pass Hydroelectric Feasibility Study and Conceptual Design	Feasibility	\$187,000	\$33,000	\$220,000	\$4,621,500
Cosmos Hills Hydroelectric Design & Permitting	Design	\$341,335	\$37,200	\$378,535	\$37,041,535
Yerrick Creek Hydropower Project: Construction	Construction	\$4,000,000	\$15,000,000	\$19,000,000	\$20,675,000
Hydrokinetic Feasibility Study: False Pass, Alaska	Feasibility	\$440,319	\$62,500	\$502,819	\$502,819
Neck Lake Hydropower Project: Phases II-III	Design	\$395,200	\$98,800	\$494,000	\$3,019,975
Clearwater Creek Hydropower Project: Phase II	Feasibility	\$386,000	\$100,000	\$486,000	\$15,891,000
Craig Water Treatment Plant Micro-Hydro	Design	\$80,000	\$10,000	\$90,000	\$297,510
Upper Hidden Basin Diversion - Geotechnical Investigation	Feasibility	\$750,000	\$750,000	\$1,500,000	\$79,992,000
Water Treatment Plant Inline Micro Turbines	Construction	\$1,100,000	\$240,000	\$1,340,000	\$1,340,000
		\$25,496,135	\$28,931,830	\$54,427,966	\$272,492,386

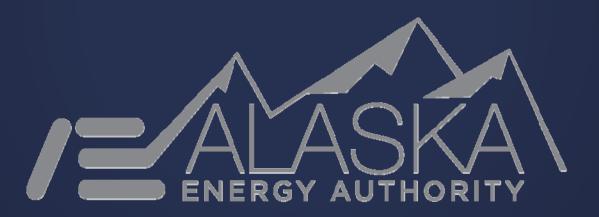
Renewable Energy Fund Round 9 Hydro Application Summary


		Sum of Grant Fund		Sum of Total Cost for	Sum of Total Cost
Phase	~	Request	Sum of Total Match	Requested Phases	Through Construction
Construction		\$16,085,606	\$26,797,001	\$42,882,607	\$46,591,607
Design		\$7,022,210	\$1,161,279	\$8,183,490	\$120,779,328
Feasibility		\$2,068,319	\$948,550	\$3,016,869	\$105,121,451
Recon		\$320,000	\$25,000	\$345,000	
Grand Total		\$25,496,135	\$28,931,830	\$54,427,966	\$272,492,386


Alaska NSD Results: Feasible Potential

- Does not include projects considered unfeasible due to economic, environmental, cultural, or land use restrictions.
- 76% of sites have a capacity less than 5 MW.
- 31 sites with a capacity above 30 MW comprise 75% of Alaska's potential.

Number of "Feasible" Projects: 437


Total "Feasible" Potential: 4.723 GW

AKEnergyAuthority.org

Daniel Hertrich, PE dhertrich@aidea.org

