

Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles October 29th, 2015

Mike Veenstra

Ford Research & Advanced Engineering

Why are we interested?

Key Importance Factors:

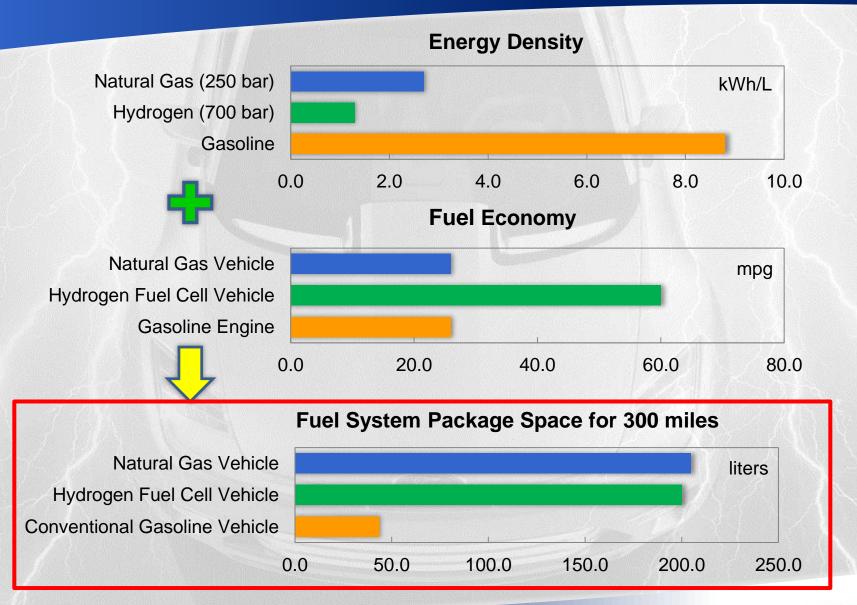
Alternative Fuel Vehicles

Energy Security: Alternative fuels offer renewable and domestic sources that reduce our offshore energy demands. **Environment**: Alternative fuels can reduce the greenhouse gases, local air quality, and other smog-causing pollutants. Cost of Ownership: Alternative fuels offer the opportunity for the use of low cost fuels and/or high efficient powertrains.

meeting customer expectations **Zero Emission Vehicles**

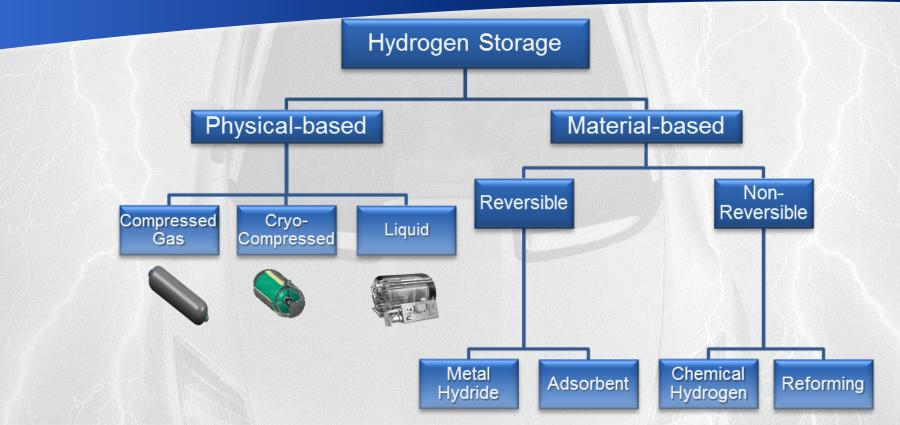
 H_2

Environment: Zero emission vehicles offer the ultimate choice for reducing CO₂/mile and local air pollution on the road. Regulatory: California Air Resources Board ZEV program requires OEMs to have ZEV credits to allow for vehicle sales in CA.


Fuel Cell

Driving Range: Fuel cell vehicles provide driving range 2 to 3x greater than typical BEVs and near conventional gasoline vehicles. **Fueling Time**: Fuel cell vehicles provide fueling times in 3 to 5 minutes

similar to conventional gasoline vehicles rather than hours for BEVs.



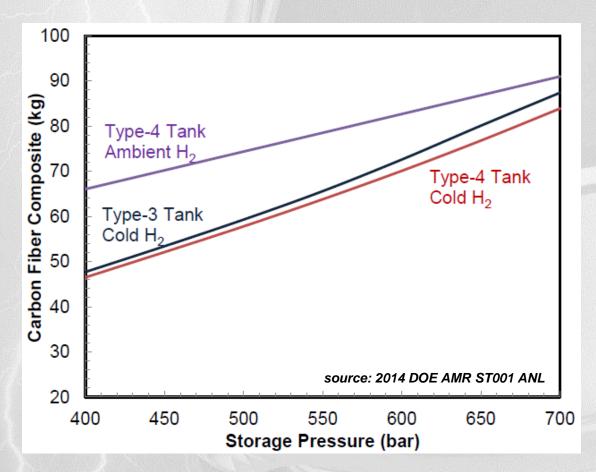
Stora	ge Parameter	Units	2020	Ultimate
System Gravimetric Capacity:		kWh/kg	1.8	2.5
Usable, specific-energy from H ₂ (net useful energy/max system mass) b		(kg H ₂ /kg system)	(0.055)	(0.075)
System Volumetric Capacity:		kWh/L	1.3	2.3
Usable energy density from H ₂ (net useful energy/max system volume) b		(kg H ₂ /L system)	(0.040)	(0.070)
Storage System Cost:		\$/kWh net	10	8
		(\$/kg H ₂)	400	266
•	Fuel cost ^c	\$/gge at pump	2-4	2-4
Dura	bility / Operability:			
•	Operating ambient temperature ^d	°C	-40/60 (sun)	-40/60 (sun)
ener e	Min/max delivery temperature	°C	-40/85	-40/85
•	Operational cycle life (1/4 tank to full)	Cycles	1500	1500
•	Min delivery pressure from storage system	bar (abs)	5	5
•	Max delivery pressure from storage system	bar (abs)	12	12
•	Onboard Efficiency ^e	%	90	90
•	"Well" to Powerplant Efficiency ^e	%	60	60
Char	ging / Discharging Rates:		41	
•	System fill time (5 kg)	min	3.3	2.5
		(kg H ₂ /min)	(1.5)	(2.0)
	Minimum full flow rate	(g/s)/kW	0.02	0.02
	Start time to full flow (20°C)	S	5	5
	Start time to full flow (-20°C)	S	15	15
	Transient response at operating temperature 10%–90% and 90%–0%	S	0.75	0.75
Fuel Quality (H ₂ from storage) ^f :		% H ₂	SAE J2719 and IS	SO/PDTS 14687-
			(99.97% dry basis)	
Envir	onmental Health & Safety:			
10.5	Permeation & leakage ^g		Meets or exceeds applicable standards	
	Toxicity			
	Safety		//	3/
Loss of useable H ₂ h		(g/h)/kg H ₂ stored	0.05	0.05

DOE Target	2020	Ultimate
System Gravimetric Density	5.5% (1.8 kWh/kg)	7.5% (2.5 kWh/kg)
System Volumetric Density	40 g/l (1.3 kWh/l)	70 g/l (2.3 kWh/l)
Storage System Cost	\$333/kg (\$10/kWh)	\$266/kg (\$8/kWh)

Material-based hydrogen storage systems have higher potential to meet the DOE targets but have increased complexity over physical-based storage options

Material Selection

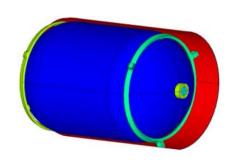
Reduce material cost Increase performance

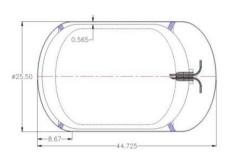

Tank Design and Manufacturing

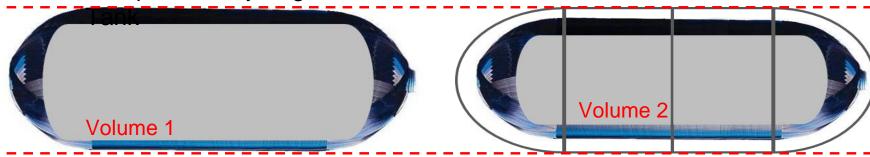
Better material use Improve efficiency

Operating Conditions

Reduce pressure Increase density







Credit: LLNL

Compressed Hydrogen

Cold Gas Hydrogen Tank

Thermal insulation needs to maintain 5-7 W maximum heat leakage performance over 15 years with minimal additional weight, volume and cost to the storage system.

Degradation of insulation results in lose of fuel and inconsistent fueling.

