

1



## Energy Optimized Desalination Technology Development Workshop

Dr. Mark Johnson Director, Advanced Manufacturing Office U.S. Department of Energy November 5-6, 2015 San Francisco





### Energy-Water Nexus: DOE's Role

- DOE has strong expertise in technology, modeling, analysis, and data and can contribute to understanding the issues and pursuing solutions across the entire nexus.
- This work has broad and deep implications
  - User-driven analytic tools for national decisionmaking supporting energy resilience with initial focus on the water-energy nexus
  - Solutions through technology RDD&D, policy analysis, and stakeholder engagement
- We can approach the diffuse water area strongly from the energy side
  - Focus on our technical strengths and mission
  - Leverage strategic interagency connections



Download the full report at energy.gov



## Technology RDD&D

Three Strategic Thrusts, Pathways, and Drivers



Energy-Optimized Treatment, Management, and Beneficial Use of Nontraditional Water

- Projections suggest desalination is most promising current technology with sufficient potential capacity to prevent reservoir depletion in western states over the coming decades
- There are a number of promising treatment technologies that could lead to optimized systems
- Systems level solutions, such as dynamic control, and off-peak optimization, bring increasing opportunities for lower cost and lower carbon footprint.

Sustainable Low-Energy Water Utilities

- Over 3% of US electricity used for water infrastructure (treatment and pumping)
- Water utilities identify energy as largest operating cost
- Energy needs increase with treatment regulatory requirements (e.g. nutrients), growing inter-basin transfers
- Process innovation (e.g. microbial fuel cells), and manufacturing advance (e.g. 3-d printing of pump impellers) enable energy efficiency and energy extraction.

#### Water-Efficient Cooling

- About 40% of US water withdrawals and 4% of consumption are for thermoelectric cooling
- Scalable cooling technologies can also reduce water requirements in industry and commercial buildings
- In FY15, there were significant investments by FE, ARPA-E ARID, and in CERC
- In FY17, we will pursue increased efficiency in heat exchangers and cooling systems, while monitoring significant recent tech investment
- In FY18, we will demo promising technology



## **DEPARTMENT OF ENERGY**





## **Clean Energy Manufacturing Initiative – Across DOE**



EWC



## **Energy and Manufacturing: Nexus of Opportunities**



Making Products which Reduce Impact on Environment

Advanced Manufacturing

Making Products with Technology as Competitive Difference



#### The Imperative





## Energy-Water Nexus: Critical National Needs

- Energy and water are interdependent.
- Water scarcity, variability, and uncertainty are becoming more prominent.
  This is leading to vulnerabilities in the U.S. energy system.
- Climate Change and Technology Change: We are already in a Race
- Updating aging infrastructure brings an opportunity.
- The nexus is regional heterogeneous, has dynamically complex systems dynamics, has large uncertainties, and many potential options.
- Energy and water issues are internationally prominent.



#### Nature's Timely Reminder!

- California drought is cited as the worst recorded in 1200 years\*
- California recently passed Italy and the Russian Federation to become the world's 8<sup>th</sup>-largest economy.





"How unusual is the 2012–2014 California drought?," Geophysical Research Letters, Daniel

Griffin and Kevin J. Anchukaitis, December 2014.



#### Context for E-W Dynamics in Water-Stressed Regions

Water Stress in the U.S.









Projected Changes in Seasonal Precipitation



Existing and Proposed Water Supply Projects

|           | Abbreviation   | Proje                                                                                                                                                                        |
|-----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Cal. Agu.      | Califor                                                                                                                                                                      |
|           | CAP            | Centra                                                                                                                                                                       |
| RWSP      | Carlsbad Desal |                                                                                                                                                                              |
| Yampa     | CUP            | Centra                                                                                                                                                                       |
| NISP 0    |                | Groun                                                                                                                                                                        |
| WG-F I    | GDP            | Projec                                                                                                                                                                       |
| +         | LPP            | Lake F                                                                                                                                                                       |
|           |                | Northe                                                                                                                                                                       |
| SDS       | NISP           | Projec                                                                                                                                                                       |
| Jana      | -              | Regio                                                                                                                                                                        |
| LSJ-Chama | RWSP           | Projec                                                                                                                                                                       |
| Alerhau   | SDS            | South                                                                                                                                                                        |
|           | SJ-Chama       | San Ji                                                                                                                                                                       |
|           | WG             | Windy                                                                                                                                                                        |
|           | Yampa          | Yamp                                                                                                                                                                         |
|           | YDP            | Yuma                                                                                                                                                                         |
|           | YampaNISP 0    | Col Aqu.<br>Cal Aqu.<br>Carisbad Desal<br>Carisbad Desal<br>Col Col<br>SDS<br>SIC-Chama<br>NEW<br>MEMCO<br>SDS<br>SJ-Chama<br>NEW<br>MEMCO<br>SDS<br>SJ-Chama<br>WG<br>Yampa |

| Abbreviation    | Project Name                                        |
|-----------------|-----------------------------------------------------|
| Cal. Aqu.       | California Aqueduct                                 |
| CAP             | Central Arizona Project                             |
| Carlsbad Desal. | Carlsbad Desalination Plant<br>Central Utah Project |
| 3DP             | Groundwater Development<br>Project                  |
| PP              | Lake Powell Pipeline                                |
| NISP            | Northern Integrated Supply<br>Project               |
| RWSP            | Regional Watershed Supply<br>Project                |
| SDS             | Southern Delivery System                            |
| J-Chama         | San Juan-Chama Project                              |
| VG              | Windy Gap Firming Project                           |
| /ampa           | Yampa Pumpback Project                              |
| DP              | Yuma Desalting Project                              |

Energy Intensity of the West's Water Supplies





## Context for the Nexus and Connected Infrastructure Vulnerabilities





<del>13</del>

#### Water flows in the United States

# A Water problem is an Energy problem

2011 Estimated U.S. Energy-Water Flow Diagram



Energy reported in Quads/year. Water reported in Billion Gallons/Day.

EWC



## What is 'Pipe Parity' for Water

- Deliver Water with equivalent Economic & Energy / Carbon cost
  - Price: Approximate \$0.50 / m3 (tonne)
    - Ranges from \$0.10 to \$1.00 nationally
  - Energy: Approximate: 1kWh / m3 (tonne)
    - 0.65 kWh (corresponding to 235m elevation change)
  - Carbon: Approximate: 1lb / m3 (tonne)
    - Based on 0.69kg CO2/kWh
  - Quality: 500 ppm TDS
  - Complimentary Cases: Produced Water and Grey Water





<del>15</del>

## Framework Cost break down for Desalination

## Goal = \$0.50/m3



## What are the technology pathways that get us there?



- <u>Operating Costs</u>: Chemical additives (anti-bacterial, longer lasting membranes), Disposal / Post-processing of saline brines
- <u>Capital Costs</u>: Low-cost heat exchangers for thermal processes, Cost Effective membranes, Balance of Plant Equipment
- <u>Energy</u>: Improve pressure energy recovery, utilize low-cost thermal energy
- <u>System Integration</u>: Intelligent design of water networks to minimize connection costs, Real-time Control and Sensor Systems
- <u>Soft Costs</u>: Workforce, Supply Chain, Permitting Expertise and Environmental Considerations



Where are the gaps?

## **Technical Challenge Framework**

Multi-disciplinary and Translational



11/12/



- What are the technology advancements needed to hit our cost target?
- What ancillary and associated technologies (membranes, pumps/valves, etc.) are needed to make desalination pipe-parity competitive?
- Identify the most effective role for DOE in advancing these technologies.
- Discuss pathways to accelerate RD&D of promising desalination approaches for fresh-water at lower energetic, economic, and environmental costs relative to existing technologies



<del>19</del>

# Thank You!