

Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting

Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

Yanliang Zhang, Darryl Butt, Vivek Agarwal, Zhifeng Ren Boise State University NEET2

October 28-29, 2015

Project Overview

Nuclear Energy

Goal, and Objectives

- Develop high-efficiency and reliable thermoelectric generators (TEGs)
- Demonstrate self-powered wireless sensor nodes (WSNs)

Participants

- Yanliang Zhang, Boise State University;
- Darryl P. Butt, Boise State University;
- Vivek Agarwal, Idaho National Laboratory;
- Zhifeng Ren, University of Houston.

Schedule 01/2015 - 12/2017

Year 1	 Determine and profile WSN power consumption Select thermoelectric materials with optimal performance Study irradiation effect on thermoelectric materials
Year 2	 Develop a TEG and WSN simulator Design TEG of sufficient power output Complete analysis of irradiation effect
Year 3	 Fabricate the TEG and test the TEG under irradiation effect Demonstrate the TEG-powered WSN prototype

Background and motivation

Nuclear Energy

3

Accomplishments

- The team achieved the following three milestones for FY15
- Selected two types of thermoelectric materials with optimal performance
- Performed initial study of irradiation effect on thermoelectric materials
- Established wireless sensor node power requirements

Select thermoelectric materials with optimal performances

Compounds		Bi₂Te₃	PbTe/PbSe	Skutterudites	Half- Heusler	SiGe
Working Temperature		0-200 °C	100-500 °C	100-500 °C	100-700 °C	100-1000 °C
Peak figure of merit ZT	N	1.1	1.3	1.7	1.0	1.3
	Р	1.3	2.2	1.0	0.9	1.0
Supply		Те	Те	Rare-earth		Ge
Cost		moderate	moderate	low	Moderate	high
Toxicity		Low	high	Low	low	Low
Mechanical Strength		Moderate	Poor	Moderate	High	High
Thermal Stability		Moderate	Poor	Low	High	High

- Bi₂Te₃ and Half-Heusler are two excellent candidates for power harvesting
- Cover broad application temperature range from room temp to 600 °C
- Combine relatively low cost, high mechanical strength and thermal stability

Enhanced thermoelectric efficiency in nanostructured materials

Nuclear Energy

Our nanostructured thermoelectric materials have shown 30-50% ZT increases

Irradiation effect on nanostructured thermoelectric materials

Nuclear Energy

XRD pattern of the irradiated and nonirradiated *p*-type half-Heusler

XRD pattern of the irradiated and nonirradiated *n*-type half-Heusler

• XRD reveals similar crystal structure before and after 1 MeV proton irradiation

Irradiation effect on nanostructured thermoelectric materials microstructures

Nuclear Energy

TEM on irradiated and non-irradiated p – type half-heusler materials

TEM on irradiated and non-irradiated n – type half-heusler materials

The similarity of microstructures between irradiated and non-irradiated samples suggest no radiation damage under 1 MeV proton irradiation

Irradiation effect on macroscale thermoelectric materials properties

Nuclear Energy

• The Seebeck coefficient and electrical conductivity of half-Heusler materials show negligible changes before and after irradiation.

Irradiation effect on microscale thermoelectric materials properties

Nuclear Energy

Scan thermal conductivity κ and Seebeck coefficient α simultaneously

Film

Substrate

Thermal conductivity map of irradiated bismuth telluride cross section

Thermal conductivity remains the same across the irradiated and non-irradiated region

Establish wireless sensor node (WSN) power requirements

Mathematical Model of WSN Power Consumption

- A rigorous mathematical model based on state transition probabilities and stochastic theory is developed
 - To compute expected energy consumed and the variance of the energy consumed by a WSN
- The model considers both WSN and network level factors like packet error rate, number of retransmission attempts, and latency

State	Description		
S_0	SLEEP state: No activity		
S_{1i}	ACTIVE state: No events		
S_{1e}	ACTIVE state: Sensing event alone		
S_{1r}	ACTIVE state: Receives relay event alone		
S_2	ACTIVE state: Processing of events		
S_3	ACTIVE state: Transmission of information		

Establish wireless sensor node (WSN) power requirements

Nuclear Energy

We focused on two wireless communication protocols: IEEE 802.11 – WLAN / Wi-Fi IEEE 802.15.4 – ZigBee

Duty Cycle =
$$\frac{T_A}{T_A + T_{S_0}}$$

 T_A Active time period during which a wireless sensor node performs sensing, processing, and transmission

 T_{S_0} Low energy state time period during which a wireless sensor node remains dormant

 α Event occurrence probability

Technology Impact

Nuclear Energy

Impact on overall NE mission and the nuclear industry

- Address critical technology gaps in monitoring nuclear reactors and fuel cycle.
- Enable self-powered WSNs in multiple nuclear reactor designs as well as spent fuel storage facilities.
- Cost savings by eliminating cable installation and maintenance.
- Significant expansion in remote monitoring of nuclear facilities.
- Significantly improve sensor power reliability and thus safety in nuclear power plants and spent fuel storage facilities.

Conclusion and future work

- Two high-performance thermoelectric materials have been selected for this project.
- Initial radiation analysis on nanostructured thermoelectric materials show no noticeable changes with proton irradiation.
- WSN power consumption has been established based on two wireless communication protocols.
- We will continue studying irradiation effect on thermoelectric materials.
- We will fabricate efficient and robust thermoelectric devices and demonstrate a self-powered WSN.

