

Campaign

Advanced Fuels

Fuel Cycle Research and Development

Severe Accident Test Station (SATS) and alloy developments

Presented by Sebastien Dryepondt, For Bruce A. Pint Materials Science and Technology Division

Webinar DOE-NE Materials, September 17, 2015

Oak Ridge National Laboratory

Nuclear Energy

National facility for evaluating new cladding concepts

- Four modules with different capabilities
- Steam to 1700°C and 1-30 bar

Several candidates meet >100X lower steam oxidation kinetics

Nuclear Energy

B.A. Pint et al., Met. Mater. Trans. E, in press

Several different experiments available in SATS modules

Nuclear Energy

Rubotherm TGA (thermogravimetric analysis)

- Isothermal (4h) experiments \rightarrow parabolic rate constant
- Ramp (5°C/min) test in steam to $1500^{\circ}C \rightarrow \text{maximum}$ use Temp.

High Temperature Furnace Module

- Isothermal (~4h) experiments \rightarrow mass change/microstructure
- 1700°C maximum

Integral LOCA Furnace Module

- Burst test of pressurized tubes in steam \rightarrow burst T vs. pressure
- 305mm (12") long, 9.5mm diameter tubing (not coupons, high TRL)

High Pressure/Temperature "Keiser" Rig

- 2012: minimal pressure effect on steam oxidation

Upgrade of LOCA furnace: View port for burst test

Nuclear Energy

Trial run with optical imaging using port in IR furnace

Nuclear Energy

- 304SS tube specimen heated to 1100°C.
 - No steam
- ~450 psi at burst
 - Internal tube pressure
- Images taken during test
 - In-situ measurements possible
- Development in progress
 - air convection issue
 - Incorporate quartz tube

Images obtained during the trial burst test from RT to 1100℃ (gif-animation)

Nuclear Energy

Data from trial run

- Tube pressurized
- Heated in air
- Heating to 1100°C
- Plastic strain -> burst
- Burst T, P identified
- Image: diameter vs. time

Accuracy

- Current ±0.7%
 - Air convection issue
- Possible ±0.2%

Future upgrade

- Incorporate quartz tube
- Burst in steam

Unique Data for Modeling

2D strain data for BISON

In-cell SATS ready to deploy in hot cell

Nuclear Energy

- High temperature and Integral LOCA modules
- FY15: Worked with hot cell staff to correct minor issues
- Hot cell space has been prepared to receive SATS and plugs ready to install
- Operating procedure complete and reviewed
- Awaiting insertion and demonstration funding

Advanced Fuels Campaign

Demo on commercial fuel rod

Community Testing

Nuclear Energy

General Electric – work now covered under FOA

- Westinghouse SiC/SiC steam testing 1300°-1500°C
- Halden Project CrN coatings on Zircaloy

GE evaluating FeCrAI and FeCr alloys

Nuclear Energy

- Initial results on steam oxidation of FeCr alloys
 - Plan "B" (FeCrAl is plan A)
- Surprising that few were protective at 1200°C
- Further work will examine the effect of minor elements on oxidation resistance
 - Mn, Si, Ti, Y, etc.
 - Model Fe-Cr-X alloys

ICP analysis of Fe-Cr alloys

Nuclear Energy

Alloy	Cr	Mn	Si	AI	Ν	S	Other
Gr.91	9.1	0.39	0.24	<	0.052	0.0122	0.86 Mo
405	12.9	0.48	0.37	0.26	0.023	<3	0.003 Ti
430	16.7	0.49	0.26	0.004	0.031	0.0009	0.002 Ti
446	24.9	0.76	0.19	<	0.108	0.0098	0.003 Ti
4C54	25.4	0.71	0.49	<	0.167	0.0036	0.004 Ti
E-Brite	25.8	<	0.22		0.008	0.0100	1.0 Mo
Model	25.0	0.67	0.25	0.01	0.001	0.0030	0.002 Y

Inductively coupled plasma analysis – optical emission and mass spectroscopy

Westinghouse: SiC/SiC composite specimens at 1300°-1500°C

Nuclear Energy

Very long exposures

- Normally 4h tests
- Several furnace failures
- Several SiC/SiC compositions
- Much higher mass gains than for CVD SiC

Burst-testing: CrN coated Zircaloy

Nuclear Energy

Coated tubes received from Halden Project

Proprietary, wearresistant CrN coating

- Not an ATF concept
- Resistant to <u>fretting</u> wear
- Completed in-pile testing with fuel

Similar burst temperatures as uncoated Zircaloy-4 tubes

Metallography of burst tubes

Nuclear Energy

CrN coated Zr-4

Similar oxide scale formed with and without the CrN coating

Nuclear Energy

Nuclear Energy

FeCrAl oxidation: Ramp testing followed 1200°C screening

2012-2013 testing

~2014 testing

Ramp testing of new FeCrAl compositions

Nuclear Energy

Inconsistent behavior between ramp and 1400°C isothermal tests

Nuclear Energy

Alloy	Ramp	1400°C
	T _{max}	isothermal
B 20Cr 5Al	1500	 Image: A start of the start of
B 10Cr 6AI	1500	*
B 10Cr 7AI	1136	_
B 10Cr 8AI	1377	 Image: A start of the start of
B 13Cr 6AI	1500	*
B 13Cr 7AI	1500	*
B 16Cr 6AI	1500	*
C 10Cr 6AI	1500	*
C 13Cr 6AI	1425	*

Advanced Fuels Campaign

Hypothesis: 1400°C steam too severe for bare, low-Cr FeCrAl

"Step" test at 1200°-1475°C developed to test hypothesis

Nuclear Energy

Rubotherm TGA: stop testing if rapid oxidation

Step test results more consistent with ramp test results

Nuclear Energy

Alloy	Ramp T _{max}	1400°C steam	Step to 1475°C
B 20Cr 5AI	1500	v	
B 10Cr 6AI	1500	*	 ✓
B 10Cr 7Al	1136	-	 ✓
B 10Cr 8AI	1377	~	v
B 13Cr 6Al	1500	*	
B 13Cr 7Al	1500	*	
B 16Cr 6Al	1500	*	
C 10Cr 6AI	1500	*	v
C 13Cr 6AI	1425	*	v

- Final "step": 1h steam oxidation at 1475°C

Solidus temperature: ~1520°C

 Pre-oxidation important to ≥1400°C steam resistance

- Initiated study of flow rate effect on oxidation

Top view Fe-10Cr-8AI-Y after 4h at 1400°C

Nuclear Energy

Dense Yttria-rich alumina area + Areas with alumina grain clusters

New alumina degradation mechanisms at 1400°C in steam?

Nuclear Energy

Degradation mechanisms not observed at 1350°C in Air Could affect early formation of alumina scale

4h steam testing

3D macroscopic height maps show grain deformation

Nuclear Energy

Fe-10Cr-6AI 4h at 1200°C

Fe-10Cr-6Al 4h at 1400°C

Burst testing of 1st generation FeCrAl alloys

Nuclear Energy

Additional tubing made by LANL

- 1st generation alloys
- Fe-13Cr-5Al+Y
- Fe-15Cr-4Al+Y
- Awaiting commercial tubing to test 2nd generation FeCrAl alloys

Nuclear Energy

Severe Accident Test Station is deployed and actively operating

- Four modules with different capabilities for high temperature steam testing
- ~240 specimens so far in FY15
- New imaging capability to assist model development
- In-cell version is awaiting deployment in hot cell
 - Re-establishing US capability for LOCA testing of commercial fuel rods

SATS used to support FCRD community

- GE work supported under FOA
- SiC/SiC exposures for Westinghouse
- Halden Project: Burst test CrN coatings

ORNL focus on FeCrAl oxidation

- Expanded composition matrix to 8%AI and 0-13%Cr
- "ramp" and "step" tests confirm alumina formation to 1475°C
- Current interest in 6%Al and 10-13%Cr alloys

