

#### Path to Economic Sovereignty: Arctic Opportunities

Presented by Kip Knudson Office of Alaska Governor Bill Walker Slide Deck prepared by Sean Skaling, Director, Alaska Energy Authority



Photo by Chuck Berray

#### 200 remote microgrids spread over large area



- Population: 735,000
- Area: 660,000 sq. miles
- 1.2 people/sq. mile
- New Jersey has 1,000 times the density
- About 200 stand-alone microgrid communities



#### **Alaska Electrical Generation**



## Alaska's Energy Costs Vary

 $\bigcirc$ 



4

#### **Energy Burden by Region**

 $\bigcirc$ 





5

#### Lowering Energy Costs is the Governor's Priority

- Monetizing Alaska's natural gas propane and LNG to villages, money to alternative energy
- All Hands on Deck
  - Alaska Energy Authority
  - University of Alaska Alaska Center for Energy Policy
  - Alaska Housing Finance Corporation
  - Alaska Industrial Development and Export Authority
  - Alaska Departments of Natural Resources, Commerce and Community Development and Environmental Conservation



#### Lowering Energy Costs is the Governor's Priority

- Not-for-profit
  - Cold Climate Housing Research Center
  - Renewable Energy Alaska Project
- Utilities
  - Alaska Village Electric Coop
  - TDX Power
  - Inside Passage Electric Coop
- Every tribe and local government
- The U.S. Government DoE, DoI, State Department, Arctic Executive Steering Committee
- The Arctic Council



7

## Alaska Energy Authority

- Mission: To Reduce the Cost of Energy in Alaska
- Programs:
  - Renewable Energy Fund
  - Emerging Energy Technology Fund
  - Rural Power Systems Upgrades
  - Energy Efficiency programs
  - Power Project Loans
  - Fuel Loans





8

## **State Policies**

- Power Cost Equalization
  - Result of 1980s hydro projects
- 2008 Renewable Energy Fund Established
  - Intent to fund \$50M per year for 5 years
  - Extended 10 extra years
- 2010 Energy Omnibus Bill:
  - "It is the intent of the legislature that the state remain a leader in petroleum and natural gas production and become a leader in renewable and alternative energy development."
  - Emerging Energy Technology Fund created



#### State Goals

 50% Renewable Electricity by 2025  15% Energy Efficiency improvement by 2020





## **Renewable Energy Grant Fund**

- Grant recommendation program
- Helps achieve renewable goal
- Displaces volatile-priced fossil fuels
- Provides a vetting mechanism
- Capitalizes on local energy resources
- Expands Alaska's RE knowledge base
- Provides local employment
- Benefits businesses not PCE eligible
- Reduces State expenses through Schools and PCE



Coffman Cove School Garn boiler. Photo courtesy of Karen Petersen



## **Renewable Energy Grant Fund**

- Emphasis on
  - Technically strong
  - Economically viable
  - High cost areas
  - Regional balance
  - Public benefit
- Eligible applicants:
  - Utilities, local governments, tribal councils, Independent Power Producers
- Eligible projects:
  - Wind, hydro, biomass, heat recovery, heat pumps, geothermal, solar, wave, tidal, river hydrokinetic, landfill gas, local natural gas, transmission of renewables



St. Paul Island Wind and Flywheel



## **Renewable Energy Fund**

- State invested \$259M in REF since 2008
- 800 Applications evaluated
- 300 Grants
- 200 Projects
- 50 Operating now
- 90 Operating by 2018





All numbers rounded

#### Abundant Energy Resources

- Oil & gas
- Hydro
- Wind
- Biomass
- Wave, tidal, river
- Geothermal
- Efficiency opportunities



Alaska wind resource map from Alaska Energy Atlas







#### **Diesel Savings from Renewable Energy Fund**





#### Renewable Energy Fund: Value Generated

- For first 44 projects in operation
- Total NPV cost of \$314M
- NPV Benefits: \$889M

Overall Program Benefit/Cost Ratio: 2.8









# Pelican Hydro Before, During & After

- Wood stave and blue tarp penstock before
- Aerial view of site during construction
- AEA project manager with new surge tank





#### Greenhouse Gas Reductions (estimates): 2014: 147,000 metric tons 2009-2014: 347,575 metric tons Projected 2015-2017: 682,360 metric tons

## Blue Lake Hydro in Sitka







## Whitman Lake Hydro in Ketchikan







## Chuniixsax Creek Hydro in Atka





## Story: Kodiak, Alaska



- 99.8% Renewable in 2015
  - 79% Hydro
  - 21% Wind
- Terror Lake Hydro added 3<sup>rd</sup> turbine
- Wind: 9MW installed capacity 6 GE 1.5MW turbines
- Battery
- Next: Flywheel to lengthen battery life and add electric crane at port



23

Pillar Mountain Wind

## **REF Summary**

- Brilliant!
- Huge catalyst at a good time
- Approach: fund good projects to get built
- Mostly above 1.0 benefit/cost
- Greater focus on feasibility stage
- Blend with loans to extend grant reach?







Installing cold climate heat pump



Testing Safe and Efficient Exhaust Thimble

#### **Emerging Energy Technology Fund**

"...make grants to eligible applicants for demonstration projects of technologies that have a reasonable expectation to be commercially viable within five years that are designed to:

- test emerging energy technologies or methods of conserving energy;
- improve an existing energy technology; or
- deploy an existing technology that has not previously been demonstrated in Alaska. "





Oceana turbine in the Tanana River



ORPC RivGen turbine in the Kvichak River

## **EETF: Hydrokinetics**

# Three river in-stream energy conversion device deployments in 2014

- Ocean Renewable Power Company (ORPC) in the Kvichak River at Igiugig
- Boschma Research Inc. in the Kvichak River at lgiugig
- Oceana Energy Company in the Tanana River at Nenana



## Lake Iliamna, Kvichak River, Igiugig, Alaska





#### $\bigcirc$

## **EETF Solicitation**

- May be focused on maximizing diesel savings on RE/diesel microgrid "Grid Bridging System"
- Goal 1: Fuel sipping
- Goal 2: Diesels off
- Control system, inverters, and storage enough to act as spinning reserve so smaller efficient diesel can be used with time to start larger diesel
- Q4 2015 or Q1 2016



#### Susitna Watana Hydro Project

- 600 MW Hydro Project
- 50% of Railbelt electrical demand
- 12,000 jobs between 2010 and 2028
- State seeking license
- \$5.6 billion to construct
- Energy savings of \$14 billion in first 50 years





#### Typical Permafrost Foundation – Thermopile with Concrete Cap



 $\bigcirc$ 





## **SpiDAR Evaluation**

- Cold-weather evaluation to test equipment accuracy and survivability.
- Light detection and ranging system weighs 60 kg.
- Remote power module weighs 375 kg.
- Deployed at Delta Wind Farm Latitude 64 deg
- Very limited winter performance data due to warranty repair.
- Possible option in lieu of met tower





## Wind Datalogger for Alaska

- RFP issued with \$20k to seed development of datalogger specifically designed to meet the needs of wind resource assessment in remote Alaska.
- Current offerings (12-15 data channels at \$1800+ per unit) targeted at large wind farm resource assessment market.
- Winning design proposal has 3 anemometer channels and 1 vane, on-board temperature sensor, 1-sec logging interval of date & time, min, max, average and std. dev for anemometer/vane and min, max, avg for temperature. .CSV format.
- Data cable inputs are spring-clip, providing for fast and reliable connection in harsh weather installations.
- Halus Power Systems is designer, manufacturer and supplier.
- Unit sells for \$500-\$650 depending on exact configuration/options.

 Datalogger unit at field test site in Palmer, AK showing controller board with SD card, spring-clip connectors and water-tight seals around cable intrusions.





#### **Investment Options**



- Renewable energy and efficiency projects
- Emerging energy technologies
- Susitna-Watana Hydro
- Energy materials
  - Turbines, penstock, pipe, wood-fired boilers, inverters, controls, diesel engines
- Social investment directly into funds



## **Final Thoughts**

- Do everything you can to get the greatest value out of remote renewable systems
- Perform good modeling and engineering!
- Quandary: High penetration, RE for heat; displaces more diesel, but economics erode
- Use public funds for their greatest good

- Focus on community/global benefit, not individual
  - Count benefit of avoided fuel, not whole bill.
  - Fixed costs are not saved by utility, just spread to other users.
- Help communities identify the best, most cost-effective energy system
  - It might be efficiency measures (end user & generation efficiency)



#### $\bigcirc$

#### **Policy & Program Innovations**







#### www.akruralenergy.org



Sean Skaling Director, Programs and Evaluation <u>sskaling@aidea.org</u> (907) 771-3079 AKEnergyAuthority.org

