Efficient AC Optimal Power Flow & Global Optimizer Solutions

Zhe Hu, Göktürk Poyrazoğlu, and HyungSeon Oh University at Buffalo CERTS Review meeting, 8/5/2015

Content

- Presentation at 2014
- Questions Raised 2014
- Major Modifications I Clique Decomposition & Merging
- Major Modifications II Angle Cut
- Major Modifications III Parallelization
- Results
- Certificate System to Guarantee the Global Optimizer
- Conclusions

Presentation at 2014

- Optimal power flow
 - Nonlinear and nonconvex → difficult to solve
 - No guarantee to find a solution
 - Heuristic search aiming for a local solution
- Global solution
 - MATPOWER does not find the global optimizer
 - Divide-and-conquer
 - Visit 20,000 nodes
 - Global optimizer within an epsilon gap
- 2015 research goal
 - Efficient algorithm
 - Parallel computation

Algorithm 2014

- Start with MATPOWER
 - → Initial lower bound
- Upper bound set by SDP
- Divide-and-conquer
 - Voltage cut
 - Angle cut
- Termination criterion
 - |UB-LB| < ε
 - $\varepsilon = 3 \times 10^{-4}$

Divide-and-Conquer Approach

Two Questions

- Global optimizer?
 - A better solution may exist within the epsilon gap
 - Answer: global solution with an epsilon-gap is not uncommon
 - Commercial software such as BARON
 - J. Global Optimization
 - Zero epsilon-gap or an epsilon-gap less than numerical error is computationally expensive
- What if an NLP solver does not find a solution?
 - NLP fails to find solution ≠ infeasible OPF
 - SDP relaxes/expands the feasible region of OPF
 - Infeasible SDP guarantees the infeasibility of OPF
- → Major change in the algorithm

Algorithm

- Infeasible NLP
 - Infeasible SDP
 - → Infeasible OPF
 - Feasible SDP
 - Best infeasible solution
 - → Lower bound
 - → D&C
- SDP finds a feasible OPF solution
 - Best feasible solution →
 Upper bound

What's New?

Selection Criterion to Prune

- Best infeasible SDP solution among active nodes set the lower bound
- Upper bound set by the best feasible solution
- How to choose a node to prune
 - SDP finds infeasible but better solution than the upper bound
 - Choose the "best" nodes among active nodes
 - Measure of "good" nodes
 - Close to feasible solution from the eigenvalues of W

$$\arg\max\left[1-\left(\frac{1}{\lambda_{\max}}\right)\sum_{n=2}^{N}\lambda_{n}\right]$$

Clique Decomposition I

- Number of elements in W is in $\vartheta(N^2)$
 - Computationally inefficient
 - Infeasible to solve a large-scale
 OPF (≥ 30-bus case)
- Connectivity in transmission grid is low
 - Sparsity of incidence matrix
 - Decompose into small cliques
 - Large single W → small multiple
 W's
- Number of independent variables in W decreases (top)
- Number of equality constraints increases to make cliques consistent with W's (bottom)

Clique Decomposition II

- Independent variables in W
 - Original W: $\vartheta(N_{bus}^2)$
 - Theoretical max with clique decomposition: $\vartheta(n \times N_{bus})$
 - IEEE model systems: $\vartheta(N_{bus}^{1.3})$
- Computation time decreases →
- SDP solvable for large-scaled systems (≥ 30 bus)

Clique Decomposition III

- Clique decomposition tends to create many small cliques
 - Many equality constraints
 - Computational inefficiency may occur
- SDP with clique decomposition reveals partial information
 - Rank(W) = max {Rank(w_i)} where w_i is the jth clique
 - A low-rank approximation with the rank yields v
 - Many elements in W are evaluated for a better approximation
- Merging small cliques can increase
 - Computation efficiency
 - Number of elements in W evaluated

M. Fukuda et. al., "Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework", SIAM J. Optim., pp. 647-674, 2000

Merging Cliques I

- Molzahn et. al. suggested merging cliques
 - Sparsity for achieving high computational efficiency
 - No specific control of the individual clique size
- Observation
 - Computation time critically depends on the largest clique size
 - Relation between the largest clique size and the number of busses in IEEE cases
- Merge and create a relatively large matrix for high speed

D. K. Molzahn, J. T. Holzer, B. C. Lesieutre, and C. L. DeMarco, "Implementation of a Large-Scale Optimal Power Flow Solver Based on Semidefinite Programming", *IEEE Transactions on Power Systems*, vol. 28, no. 4, pp. 3987-3998, Apr. 2013

		Case Name - # of Bus						
		14	30	57	118	300	2383	2736
	# of Cliques	12	26	52	108	278	2,312	2,652
	The largest Clique Size	3	4	6	5	7	25	25
	# of Equality Constraints	103	233	758	1,394	3,631	44,729	51,922
	# of Independent Variables	241	543	1,477	2,812	7,167	76,498	88,634

Merging Cliques II – Computed Elements in W

- Molzahn's method (orange)
 - Merging reveals elements in W
 - No specific control of the largest clique
- Our approach (blue)
 - Control the largest clique
 - Same computation time, more elements in W are evaluated

D. K. Molzahn, J. T. Holzer, B. C. Lesieutre, and C. L. DeMarco, "Implementation of a Large-Scale Optimal Power Flow Solver Based on Semidefinite Programming", *IEEE Transactions on Power Systems*, vol. 28, no. 4, pp. 3987-3998, Apr. 2013

Merging Cliques III – Computational Efficiency

- Merging cliques after the clique decomposition
 - Reduce the number of equality constraints
 - Less elements in W are evaluated
- Proposed method
 - Control the largest clique
 - Different behavior →
 - Direct relation between the largest clique size and the computational time
 - Easier & faster PSD matrix completion
 - → Suitable for D&C

D. K. Molzahn, J. T. Holzer, B. C. Lesieutre, and C. L. DeMarco, "Implementation of a Large-Scale Optimal Power Flow Solver Based on Semidefinite Programming", *IEEE Transactions on Power Systems*, vol. 28, no. 4, pp. 3987-3998, Apr. 2013

New Angle Cut

- f: real voltage, e: imaginary voltage
- Voltage angle in the Cartesian CS: $\theta_i = \tan^{-1}(f_i/e_i)$
- Angle cut imposes limits of voltage angle: $e_i \tan \theta_i^{\min} \le f_i \le e_i \tan \theta_i^{\max}$
- In the OPF problem, two constraints are combined

$$f_i^2 - \left(\tan\theta_i^{\min} + \tan\theta_i^{\max}\right) f_i e_i + \left(\tan\theta_i^{\min} \tan\theta_i^{\min}\right) e_i^2 \le 0$$

- In SDP, $W = vv^T$
- Angle cut is a linear constraint in SDP

$$W_{i,i} - \left(\tan \theta_i^{\min} + \tan \theta_i^{\max}\right) W_{i,N+i} + \left(\tan \theta_i^{\min} \tan \theta_i^{\max}\right) W_{N+i,N+i} \le 0$$

Algorithm with the New Angle Cut

New angle cut is a single linear constraint

$$W_{i,i} - \left(\tan \theta_i^{\min} + \tan \theta_i^{\max}\right) W_{i,N+i} + \left(\tan \theta_i^{\min} \tan \theta_i^{\max}\right) W_{N+i,N+i} \le 0$$

 In comparison, old angle cut is from upper and lower constraints

$$\tan\left(\theta_{i}^{\min}\right)W_{i,j} \leq W_{(i+N),j} \text{ and}$$

$$W_{(i+N),j} \leq \tan\left(\theta_{i}^{\max}\right)W_{i,j}$$

- Terminate the process earlier, but find the same solution
 - → more efficient

Results: Global Solutions

- Visit multiple nodes simultaneously
- Server for parallel computation
 - 9 machines
 - 2 processors/machine
 - 6 cores/processor
 - 2.50GHz Intel Xeon processor
- For a same system, depending on the loading conditions, there are changes in
 - Number of nodes visited
 - Computation time
- Epsilon gap ≤ 10⁻⁵

Results I – Normalized System Costs

- In comparison to the first feasible solution found →
 - 0.1-2% cost reduction
- 0.1% savings is greater than \$10⁹/year in US [1]
- In comparison to the MATPOWER solutions
 - MATPOWER finds the global solutions
 - Except 14-bus case [2]: 0.3% cheaper solution

[1] R. O'Neill, "It's Getting Better All the Time (with Mixed Integer Programming)", Harvard Electricity Policy Group, Los Angeles, CA, Dec. 2007.

[2] R. Louca, P. Seiler, and E. Bitar. "A Rank Minimization Algorithm to Enhance Semidefinite Relaxations of Optimal Power Flow." *Communication, Control, and Computing (Allerton), 2013 51st Annual Allerton Conference on*, pp. 1010-1020, 2013.

Results II – Computation Time

- Computation time
 - Typically 50-times faster with parallelization
 - 150~3,000 times slower than an NLP solver
 - BARON: 1.5 days (10⁵ sec) for 9-bus case
- Epsilon-gap = 10⁻⁵
 - BARON's default = 10⁻³
 - Numerical error ≤ 10⁻⁸

Global Optimizer?

- Non-zero epsilon-gap
 - Zero gap is computationally very expensive to achieve with D&C
- Terminate the process after visiting many nodes
- If there is any way to guarantee the global optimizer, the process can be terminated earlier
- Check if MATPOWER solution is the global optimizer

Trust Region Method I

- Quadratic objective function $\min g^T x + 0.5x^T Bx$
 - Trust region constraint
 - No other constraints

$$s.t. \quad ||x|| \leq \Delta$$

- If λ and p satisfies the following conditions, p is the global solution
 - Equality constraint: $(B + \lambda I)p = -g$
 - Positive definiteness: $B + \lambda I \succeq 0$
 - Either if
 - $\lambda = 0$ and $\Delta \rightarrow \infty$ OR
 - $\lambda > 0$ and $||p|| = \Delta$
 - D. C. Sorensen, "Trust region methods for unconstrained optimization", *SIAM J. Numerical Analysis*, 19 (1982), pp. 409-426.

Trust Region Method II

- General quadratic optimization
 - Trust region constraint
 - Equality constraints
 - Inequality constraints

min
$$g^T x + 0.5x^T B x$$

s.t. $||x - x_0|| \le \Delta$
 $h^T x + 0.5x^T C x = 0; \mu$
 $k^T x + 0.5x^T D x \le 0; \sigma$

• If μ^* , σ^* , λ , and p satisfies the following conditions, p is the global solution inside the trust-region \rightarrow epsilon gap is NOT necessary

$$\left(B + \mu^* C + \sigma^* D + \lambda I \right) p = -g - \mu^* h - \sigma^* k + \lambda x_0$$

$$B + \mu^* C + \sigma^* D + \lambda I \succeq 0$$

$$\left\{ \sigma^* = 0 \& k^T x + 0.5 x^T D x \le 0 \right\} OR \ \left\{ \sigma^* > 0 \& k^T x + 0.5 x^T D x = 0 \right\}$$

$$\left\{ \lambda = 0 \& \Delta \to \infty \right\} OR \ \left\{ \lambda > 0 \& \left\| p - x_0 \right\| = \Delta \right\}$$

Global optimizer

Trust Region Method for Optimal Power Flow

- Rewrite OPF into QCQP
 - Flow constraints are in quartet
 - Introduce real and reactive power injection variable over a line

$$\min \quad 0.5p^{T}Bp + g^{T}p$$

$$\begin{cases} v^{T}\Phi_{j}^{P}v = p_{j} - p_{d,j}, v^{T}\Phi_{j}^{Q}v = q_{j} - q_{d,j} \\ v^{T}\Psi_{k}^{P}v = p_{k}, v^{T}\Psi_{k}^{Q}v = q_{k}, p_{k}^{2} + q_{k}^{2} \le c_{k}^{2} \\ v_{\min}^{2} \le v^{T}Mv \le v_{\max}^{2} \\ p_{\min} \le p \le p_{\max}, q_{\min} \le q \le q_{\max} \end{cases}$$

Revisit to the Divide-and-Conquer Approach

New Algorithm Incorporating the Certificate

- SDP feasible solution
- OPF local solution
- Issue the certificate to guarantee the global optimizer
- Epsilon-gap is removed from the algorithm
- Process to check |UB LB| ≤ ε is not necessary

New Termination Criterion with the TR Certificate

- During the searching process, find local optimizers
- Trust-region global optimality condition
 - Local optimizers do not satisfy
 - Global optimizer does

 Terminate the search

 process
- Performance of D&C with TRC
 - Terminated when gap > 10⁻⁵
 - Only 100 nodes visited
 - Tested with Case14A only

This Approach vs. MATPOWER

- MATPOWER
 - High efficiency to search for an optimizer
 - Based on our experience up to now, MATPOWER finds the global solution except one case (Case14 with modified offers, by 0.2%)
- This approach
 - MATPOWER finds an optimizer
 - Most cases: Global optimizer → Issue the certificate & terminate the search process
 - Some cases: 10 times slower than MATPOWER, but much faster than an algorithm with ε-gap (150-3,000 times slower)
 - Guarantees
 - Infeasibility of an OPF problem
 - Global solution
 - Finds multiple local optimizers

Conclusions

- Our D&C finds the global solution in an efficient way by
 - Dividing regions with voltage cut and angle cut
 - Finding the ideal place to prune using the sub-optimization problem
 - Terminating a node efficiently
- Our D&C is modified
 - Added capability to guarantee the infeasibility of OPF
 - New angle cut in a single linear form
 - Clique decomposition & merging
 - Parallel computation to enhance efficiency
 - Early termination with the Trust-Region Certificate

