### Why Pay Rent?

Load Flexibility for Congestion Limiting Dispatch

Jonathan Mather, UCB Enrique Baeyens, Valladolid Kameshwar Poolla , UCB Pravin Varaiya, UCB

July 27, 2015

# Congestion

- Actual and scheduled power flows over a transmission line have constraints
  - thermal limits, stability limits on MVA ratings
  - ignore reactive power
  - look at simpler problem of active power flows
- Congestion causes prices to rise
  - loads pay more, system (fuel) costs increase
  - congestion forces use of more expensive generators
  - two bus example, line capacity C = 10



#### Congestion costs are real:

- $-\,$  loads paid  $\sim\$0.7\text{bn}$  extra per year year in PJM's service area
- $-\,$  system costs are higher, may be forced to use inefficient generation
- safety margins are lower, grid is less resilient (hard to monetize avoided costs)
- Load flexibility and storage can reduce congestion
  - could be far more lucrative than price arbitrage, supporting capital costs of strategic storage
  - may avoid or delay need for expensive upgrades to transmission infrastructure
  - increased safety margins in the event of a contingency

#### Can shift power consumption:

temporal – defer consumption now, use more power later spatial – use less power here, more power there

### Examples:

- temporal: smart appliances, EVs, HVAC systems
- spatial: data centers

#### Applications:

balancing services to enable renewable penetration, frequency regulation, peak shaving, volt/var control many are commercialized (EnerNOC, Comverge, Opower)

- Can shift power consumption in time
- Similar to temporal load flexibility
- Economic reality:
  - $-\,$  storage is expensive:  $300/{\rm Kwh}$  for Li-Ion
  - but perceived as having strategic value ...
     California mandate: 1.3GW of ramping capability through energy storage by 2020
  - must monetize all revenue streams [Denholm, 2013]

## Simple Models

Nominal consumption at fixed bus, T time slots

 $n=(n_1,n_2,\cdots,n_T)$ 

• Consumption under flexibility  $n + \delta$ ,  $\delta \in \Delta$ 

• Temporal flexibility:

$$\Delta = \left\{ \delta: \ |\delta_t| \leq F, \ \sum_t \delta_t = 0 \right\} \quad F: \mathsf{flex \ capacity}$$

Storage: initially half charged

$$\Delta = \left\{ \delta : |\delta_t| \le R, \ \left| \sum_{1}^t \delta_k \right| \le C/2 \right\} \qquad \begin{array}{c} R : & \text{charge/discharge rate limit} \\ C : & \text{storage capacity} \end{array} \right.$$

## Load Flexibility as Storage

- Load flexibility models
  - nominal consumption n
  - flexible consumption  $p = n + \delta, \ \delta \in \Delta$
  - $\ \text{conservative model } \mathbb{S} \subseteq \Delta$

$$\mathbb{S}(m, C, \alpha) = \{\delta : \dot{x} = -\alpha x + \delta, |x| \leq C, |\delta| \leq m\}$$

- Load flex can be conservatively modeled as a virtual battery
  - includes rebound effects, efficiency programs, etc
  - $-\,$  battery params capacity C, ramp rate m, dissipation  $\alpha$
  - parameters are random
  - $-\,$  depend on exogenous, ex: random processes occupancy, weather, etc
  - previous CERTS research (with A D-G) to determine params
- Loads need lead time to organize and deliver their storage

## Set-up

- Load  $\ell$ , generation g, net power injection  $q = g \ell$
- Generator model:

 $\begin{array}{ll} \mbox{convex fuel costs} & J_i(g_i) \\ \mbox{capacity limits} & 0 \leq g_i \leq G_i \end{array}$ 

- Load model: inelastic demands
- DC power flow model

power balance at each bus line capacity constraints

$$Y heta = q = g - \ell$$
  
 $M heta \leq C$ 

• Social cost 
$$J(g) = \sum_i J_i(g_i)$$

Economic Dispatch min J(g) : constraints determine generation levels to meet a given load at minimum cost

## Day-ahead Economic Dispatch

- Simplified time-line:
  - 1 generators submit bid curves (usually piece-wise linear), 1 hr blocks
  - 2 loads submit demand forecasts, 1 hr blocks
  - 3 system operator determines

economic dispatch, i.e. how much each generator should produce clearing prices at each bus  $\lambda_i = \text{location marginal prices}$ 

- 4 loads at bus *i* are obligated to purchase power  $\ell_i$
- 5 generators at bus *i* are obligated to supply power  $g_i$
- 6 then proceed to real-time market ...
- Lots of other important details omitted:

a/c power flow model, elastic demand bids bilateral contract constraints, market power, virtual bids, out-of-merit generators, security constraints

• Key point: all participants at bus *i* face price  $\lambda_i$ , regardless of bids

## Economic Dispatch

$$egin{aligned} & \min_{g, heta} J(g) = \sum_i J_i(g_i) \ & ext{subject to} \quad q = Y heta \ & M heta \leq C \ & -g \leq 0 \ & g \leq G \end{aligned}$$

g generation  $\ell$  load (demand forecast) q net injections,  $q = g - \ell$   $\theta$  voltage angles J(g) total fuel cost C line capacities G upper generation limits

Standard convex optimization problem

Dual variables

 $\lambda$  - locational marginal prices

from power balance  $Y\theta = q$ 

 $\mu$  - shadow congestion prices

from line limits  $M\theta \leq C$ 

# Key Concepts and Facts

- Economic Dispatch g
- Locational Marginal Prices (LMPs)  $\lambda$ 
  - $-\lambda_i =$  marginal cost of supplying 1 extra MW at bus i
  - $-\lambda_i$  could be negative!
  - $-\lambda_i$  could be greater than marginal cost of most expensive generator
  - no congestion  $\implies \lambda = \text{constant}$
  - if even one line is congested, all LMPs change
- Payments
  - total fuel costs J(g)
  - total payment to generators  $\lambda^*g$
  - total payment from loads  $\lambda^* \ell$
- Merchandizing surplus
  - what is left over:  $MS = \lambda^* (\ell g)$
  - thm:  $MS \ge 0$  always
  - MS used to support transmission expansion costs

# Geometry of LMPs

- Feasible load set F
- Geometry of *F*: union of polytopes

$$F = \bigcup_i S_i$$

- S<sub>i</sub> defined by congested lines and marginal generators
- LMPs fixed in each  $S_i$
- Example:

| set   | LMP            | congestion? |  |
|-------|----------------|-------------|--|
| $S_1$ | $\pi_1, \pi_1$ | no          |  |
| $S_2$ | $\pi_2, \pi_2$ | no          |  |
| $S_3$ | $\pi_1, \pi_2$ | yes         |  |

cheap expensive  $\pi_1$  $\pi_2$ g1 С  $G_2 + C$  $S_2$ С S  $G_1 - C \quad G_1 \quad G_1 + C$ 

#### • What happens to the congestion free set $S_1 \cup S_2$ under flexibility/storage?

# Feasible Load Set ${\mathbb F}$

#### Feasible load set $\mathbb F$

Set of loads that can be served while respecting power flow, generation limits, line constraints:

 $\mathbb{F} = \{\ell : \exists \theta, g \text{ with } Y\theta = g - \ell, M\theta \le C, 0 \le g \le G\}$ 

- could restrict loads to be non-negative:  $\ell \geq 0$
- we won't because storage allows for negative load
- $\mathbb{F}$  is a polytope





## Feasible injection set ${\mathbb Q}$

### Feasible injection set $\mathbb{Q}$

Set of nodal power injections that respect power flow, line constraints:

$$\mathbb{Q} = \{ q : \exists \theta \text{ with } Y \theta = q, \mathbf{1}^* q = 0, M \theta \leq C \}$$

- injections 
$$q = g - \ell$$

 $- \mathbb{Q}$  is a polytope





# Merit-Ordered Generation Set M

### Merit-Ordered Generation Set $\mathbb M$

Least expensive generation vectors g that supply  $1^T g$ :

 $\mathbb{M} = \{g: \quad 0 \leq g \leq G, \ J(g) \leq J(\hat{g}) \text{ for all } \hat{g} \text{ with } \mathbf{1}^T g = \mathbf{1}^T \hat{g} \}$ 

- $\mathbb M$  is generally not convex
- $-\,$  very easy to compute  $\mathbb M$  by merit ordering
- $g \in \mathbb{M}$  implies congestion free dispatch





•  $L_F$  = set of loads  $\ell$  for which the economic dispatch is congestion free

- $\ell$  is being serviced as inexpensively as possible
- line constraints are all slack:  $M\theta < C$

#### Theorem

Congestion free load set  $L_F$  is the Minkowksi sum

 $L_F = \mathbb{M} + \mathbb{Q}$ 

Congested load set is the complement

 $L_C = \mathbb{F} \setminus L_F$ 

•  $L_F$  is generally not convex, because  $\mathbb{M}$  is not convex

## Two Bus Example Summary









Why Pay Rent?

# General Geometry Results

#### Theorem

Assume piece-wise linear generation costs

(a) feasible load set is the disjoint union

$$\mathbb{F} = \bigcup S_k \qquad S_k$$
 polytope

- (b) LMPs constant in  $S_k$
- (c)  $S_k$  determined by marginal generators and congested lines



## Key Idea: The Value of Flexibility



- want to serve (n, n) over 2 time slots
  - this results in congestion
- with sufficient flexibility, can serve (a, b)
  - yields congestion free dispatch
  - total energy delivered is the same:

$$a+b=n+n$$

| Alternatives | $t_1$ | $t_2$ | Congested? |
|--------------|-------|-------|------------|
| Non flexible | п     | п     | Yes        |
| Flexible     | а     | b     | No         |

# General Network Results

#### How big can we make $L_F$ using demand flexibility?

#### Theorem

Congestion free load set under flexibility is the convex hull  $co(L_F)$ .

- proved using Shapley-Folkman theorem
- requires longer windows over which flexibility is offered
- needs a lot of flexibility (too much) for CF dispatch
- finite resource result is open

### Shapley Folkman Theorem

For any set 
$$S \subset \mathbb{R}^n$$
,  $\lim_{N \to \infty} rac{1}{N} \sum_{k=1}^N S = \operatorname{co}(S)$ 



S







## Congestion free load set under Flexibility



- consider loads as a collective
  - $-\,$  loads pay less under congestion free dispatch if  ${\it C} > {\it G}_1/2$
  - some loads pay more, so must redistribute savings fairly
- consider generators as a collective
  - generator revenue is unchanged under flexible dispatch
- system (fuel) cost is same under flexible dispatch
- Loads benefit as a collective with CF dispatch, under network condns
- Savings come from redistributing MS

# Flexible Bidding

- Congestion free dispatch requires too much flexibility/storage
- More realistic to study marginal benefits of small amounts  $\epsilon$  of flexibility/storage
- Flexible bidding
  - 1 LSEs at each bus recruit some demand flexibility, install some storage
  - 2 LSEs submit available flexibility to SO
  - 3 LSEs submit demand needs to SO
  - 4 SO conducts multi-period economic dispatch
- SO determines optimal use of flexibility
- Demand flexibility and storage models add convex constraints
- Flexible economic dispatch is still a convex program

# Flexible Bidding: setup

- -k bus index
- t time index
- Quadratic generation costs

$$J(g_k) = \alpha_k g_k^2$$

- Demands in slot t at bus k is  $\ell_{t,k}$
- Simple flexibility model: small flex capacity at bus k is  $\epsilon_k$
- Loads will accept  $\ell+\delta$  if

$$|\delta_{t,k}| \le \epsilon_k, \quad \sum_t \delta_{t,k} = 0, |\delta_{t,k}| \le \epsilon_k$$

# Flexible Bidding: analysis

### LMP sensitivity matrix

$$G_t = \left[rac{\partial \lambda_{t,k}}{\partial \ell_{t,k}}
ight]$$
 (we have closed-form expressions for  $G_t$ )

#### Theorem

Optimal dispatch under flexible bidding:

$$\min_{\delta_t} \sum_t \ell_t^{\mathsf{T}} \mathsf{G}_t \delta_t \quad \text{s.t.} \sum_t \delta_t = 0, |\delta_t| \le \epsilon$$

This is a linear program!

- loads benefit as a collective
- some loads may pay some
- savings result from congestion relief

# Congestion Relief vs. Arbitrage

- Small storage or flex demand  $\epsilon$
- Price arbitrage:
  - benefit = small storage  $\times$  big price difference  $\delta_p$
  - limited opportunity (i.e. once/day)
  - $\text{ daily profit} = \epsilon \times \delta_{\textit{p}} \times 1$



### Congestion relief:

- $-\,$  small storage  $\epsilon$  causes small LMP changes  $\delta\lambda={\it G}\epsilon$
- total load at each bus benefits from  $\delta\lambda$
- $\ \, \mathsf{benefit} = \ell \times \delta \lambda$
- could be a frequent opportunity (i.e. r times/day)
- $\text{ daily profit} = G\epsilon \times \ell \times r$

# Conclusions

Flexibility/Storage enables congestion limiting dispatch

- enlarges set of loads that can be served economically without congestion
- flexibility brings economic benefits to all market participants under certain network conditions
- Small amounts of flexibility/Storage enable congestion relief
  - realized through multi-period flexible bidding
  - SO determines optimal use of flexibility
  - savings could be a constant income stream, not just a once a day arbitrage opportunity

# $\mathsf{Current}/\mathsf{Future}\ \mathsf{work}$

### Algorithms

- efficient computation of congestion limiting load sets
- full AC-OPF extension

### Control & Operations:

- what degree of coordination between loads is required?
- what happens under partial participation
- flexible bidding in economic dispatch?

#### Simulation studies:

- real-world networks and data to determine potential savings
- enough to pay for capital costs of storage?

#### Economics:

- exploration of the economic incentives for participants
- fair sharing of savings among loads?