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Objectives

Two threads of research → remove and anticipate system level roadblocks
for renewables & flexible demand integration

Model demand response in coupled infrastructures

Electrified Transportation networks

Competitive electric power market for power trajectories

Addressing shortage of ramping
Understanding how to express degrees of freedom much needed to
rebalance net-load
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Infrastructures of the future

Into the information age and Internet of Things (IoT):

Large-scale data processing + real-time interactions with humans

Millions of control knobs for more efficient and sustainable demand, but:

1) We face challenges of dimensionality and stochasticity
2) Humans bring social and and economical issues into control loops
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Concrete example: managing Electric Vehicle charge

Electric Vehicles (EV): the fuel comes from the power grid

Forecast → 64-86% of US sales by 2030 [CET, UC Berkeley]

We need: control scheme to incentivize EV drivers to charge their
batteries where and when electricity is abundant and cheap
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Our previous work

Contribution: enabling large-scale model-predictive scheduling
by systematically reducing model complexity
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Our previous work

Contribution: proposing an economic retail mechanism that
incentivizes customers to be green
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This year

Contribution: designing wholesale prices considering the interconnection
between power and transportation systems
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Designing wholesale prices in coupled
infrastructure

Outline:

- Mathematical model for how a rational customer charges an EV

- Effect of individual choices on system load

- Design wholesale prices for socially-optimal system-level behavior
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The price design challenge: customer choice model

Extensive past research on EV load scheduling

Study of node-specific control algorithms by local retailers

Aspect not often considered: EVs can move!

Can we safely ignore EV mobility when
modeling customers for designing prices?
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Individual customer choice model

Each link takes a certain amount of time and energy to travel:

Origin Destination

Fast charging station

1

2

3

4

⌧a(�a), ea

Individual Decision Variables:

Choice of path: k ∈ K
Choice of charge: at nodes visited on path
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Individual customer cost

Customer cost affected by the state (demand flows) of the 2 networks

λ1 = [λa]a∈A, λ2 = [λv ]v∈B, p = [pv ]v∈B

Inconvenience cost for time en route:

sa(λa) = γτa(λa)

Traffic congestion tolls (ba)

Origin Destination

Fast charging station

1

2

3

4

⌧a(�a), ea

Electricity costs at node v for charge ev
charging rate = ρv
rate of EVs being plugged in = λv

bv (ev ) = pvev , sv (ev , λv ) = γ

(
ev
ρv

+ τv (λv )

)
.
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Solution: shortest path on a virtually extended graph

Charging has the same cost structure as traveling:
- it takes time
- it has a cost
- the battery energy level changes (it increases)

Consider charging an extra trip

Adding virtual links to the original transportation graph

Customer choice model: charge and path decision

Find the shortest energy-feasible path on extended graph
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Individual customer optimization problem

Set of energy feasible paths

A path is energy feasible iff

0 ≤ Initial charge−
I∑

i=1

i-th link’s energy ≤ Battery capacity, ∀I

Individual problem:

min{Cost for path k ; k ∈ set of energy feasible paths}

Why did we model the individual? We wanted to design electricity prices

Prices are not designed for individuals! They are designed for aggregates
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Aggregate effect of individual decisions

Aggregate behavior affects the state of two infrastructure systems:
1 Traffic congestion (flow on roads and into charging stations)
2 Electric load (flow on virtual links)
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Mapping individual choices to network flow

Cluster customers’ travel demand characteristics q (classic step in
transportation literature)

q ∈ C (finite set)

Feasible paths on extended graph for cluster q → k ∈ Kq

aq = EV arrival rate in cluster q (given)
dk
q = rate of EVs in cluster q that take path k (customer decision)

Travel demand balance: ∑
k∈Kq

dk
q = aq

Path to flow relation in static case

λa =
∑

q∈C,k∈Kq

δkadk
q

(∑
path rates that include link a

)
If you could choose dk

q , you would control the flow λa
on the extended graph
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Social costs in terms of individuals’ choices

Congestion cost = λT s(λ) Electricity Cost = min
g

1Tc(g)

s.t. gmin � g � gmax,

e = Mλ→ 1T (e + u− g) = 0,

H(e + u− g) � c,

Flow as a function of user decisions:
dq � 0, 1Tdq = aq, λ =

∑
q∈Q∆qdq

If you control the flow λ, you control traffic and energy costs

But, dq and hence the flow λ are the results of individuals decisions
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Optimal pricing: results

1) Welfare maximizing price design

A social optimizer can jointly calculate:

1 Locational marginal electricity prices;

2 Tolls to be assessed at all roads;

3 Congestion mark-ups for limited charging station capacity;

such that Wardrop equilibrium with cost-minimizing decisions of individual EV
drivers will be socially optimal.

2) Collaboration between power and transportation system operators

Efficient market-clearing prices can be posted through a ex-ante collaboration
between the power and transportation system operators following a dual
decomposition algorithm.

3) The cost of operators not talking!

Reserve generation capacity so power system operators can learn EVs’ response.
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Pricing without considering EV mobility

Power system operator cannot model EV mobility!

Iterative procedure:

1 Step 1: design electricity prices, taking charge decisions as exogenous

2 Step 2: Find socially optimal travel and charge plan taking electricity
prices as exogenous

Power system

Locational marginal price

Charging plan

Transportation System
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Numerical experiment - Setting

Static setting based on IEEE 9 bus test case
Transportation graph with one O-D pair: (Davis, San Jose)

Davis

Winters

Fairfield

Mtn. View

San Jose

Fremont

5

65
70

60
40

60

40

120 MWh
10 MWh

160 MWh

40 MWh

80 MWh 200 MWh

Power Generator Load Buses

All EVs consumes 1 kWh each 25 miles
Cost of unit time spent en route: γ = 10−3/3 $ / 5 min.
Flow to travel time mapping:

τa(λa) = Ta + λa/10
4

Rate of travel: 2000, 10000, 10000 EVs, each with initial charge of 2kWh, 3kWh and 4kWh, respectively

Fast charge rate: 1 kWh to each EV every 5 mins + no capacityAnna Scaglione (ASU) August 3, 2015 19 / 35



Joint vs. disjoint marginal pricing of power and traffic

Limit-cycle behavior seen in load values at different iterations

Joint DP (iter. odd) DP (iter. even)

Davis 91.67 MWh 110.0 MWh 15.411 MWh
@$53.43/MWh @$54.49/MWh @$66.45/MWh

Winters 35.27 MWh 4.921 MWh 46.12 MWh
@$51.76/MWh @$54.49/MWh @$44.50/MWh

Fairfield 18.82 MWh 15.93 MWh 84.12 MWh
@$52.09/MWh @$54.49/MWh @$48.84/MWh

Fremont 0.211 MWh 7.819 MWh 0.00 MWh
@$52.33/MWh @$54.49/MWh @$51.93/MWh

Mtn. View 0.103 MWh 7.326 MWh 0.00 MWh
@$52.85/MWh @$54.49/MWh @$58.85/MWh
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Next steps

1 We saw the emergence of coupled infrastructure due to EVs
We have shown numerically that ignoring this coupling can be
dangerous to the grid

2 We saw how we can control such systems in an ideal world

We need to tackle

Temporal dynamics + system not at equilibrium + humans not rational

Need to maintain compositionality → Inter-layer decoupling to prevent
formation of highly complex systems

Anna Scaglione (ASU) August 3, 2015 21 / 35



Higher Goal: Sustainable intelligent coupled infrastructure

Resilient interdependent human-cyber-physical systems
e.g., power, water, and data networks in smart cities

Significant flexibility in electricity consumption supports the delivery
of goods and services by other networked infrastructure

Solution steps:
1 Systematic and case-dependent reduced-state modeling + control
2 Modeling retailer and human behavior in the control loop
3 Layered solutions that don’t need centalized collaboration
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Unit Commitment with Continuous-time
Generation and Ramping Trajectory

Outline:

- Why the UC problem poorly schedules for ramp resources

- From Continuous Time UC to a tractable representation for Power
Trajectories

- Solution of the Continuous Time UC and advantages
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Motivation

Problem: Shortage of ramping resources in the real-time operation of
power systems → ramping is not appropriately incentivized

Flexible ramping products in CAISO and MISO: 1) complicate the
market; 2) what is the reasonable level of cost allocation?
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Interpretation of Current UC practice

1 Current UC practice: schedule of hourly energy by the generating
units → piecewise constant generation trajectory

2 Trajectory Interpretation: Hourly ramping constraints → piecewise
linear generation trajectory
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Continuous-time UC Formulation

A set of K generating units are modeled by:
Generation Trajectory: G(t) = (G1(t), . . . ,GK (t))T

Ramping Trajectory: G′(t)=(G ′1(t), . . . ,G ′K (t))T

Commitment Status: I(t)=(I1(t), . . . , IK (t))T

Ik(t) =
∑Hk

h=1

(
u(t − t(SU)k,h )− u(t − t(SD)k,h )

)
Cost Function: Ck(Gk(t),G ′k(t), I ′k(t); t)

Continuous-time UC:

min
K∑

k=1

∫
T

Ck(Gk(t),G ′k(t), I ′k(t))dt (1)

s.t.
K∑

k=1

Gk(t) = N(t) ∀t ∈ T (2)

G k Ik(t) ≤ Gk(t) ≤ G k Ik(t), G ′k Ik(t) ≤ G ′k(t) ≤ G
′
k Ik(t) ∀k, t ∈ T(3)

t(SD)k,h − t(SU)k,h ≥ T (on)
k , t(SU)k,h+1 − t(SD)k,h ≥ T (off)

k , ∀k, h, t ∈ T (4)
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Defining cost in the (Gk(t),G ′k(t)) plane

Idea: If we need more ramp in addition to representing better the
need for ramp, why not allowing bids that include a cost for ramp?
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Generation and Load Trajectories in a Function Space

Assume that in the horizon T , except for a small residual error, N(t) lies
on a countable and finite function space of dimensionality P, spanned by a
set of bases functions e(t) = (e1(t), . . . , eP(t)):

N(t) =
P∑

p=1

Npep(t) + εN(t) = e(t)N + εN(t)

N = (N1, . . . ,NP)T are the coordinates of the approximation onto the
subspace spanned by e(t). Also, any generation trajectory has a
component is in the same subspace spanned by e(t) and a component
orthogonal to it, i.e.:

Gk(t) =
P∑

p=1

Gkpep(t) + εGk
(t) = e(t)Gk + εGk

(t).
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Spline Representation using Cubic Hermite Polynomials

Day-ahead scheduling horizon T is divided into M intervals, edges
0, t1, t2, · · · , tM .

Splines of order > 1 allow to encode ramping information explicitly.

Cubic Hermite basis functions: four polynomials of third order in
t ∈ [0, 1), vector: H(t) = (H00(t),H01(t),H10(t),H11(t))

Hij(τm) = Hij

(
t − tm

tm+1 − tm

)
, i , j ∈ {0, 1}, tm ≤ t < tm+1

Load and Generation trajectory in cubic Hermite spline function space:

N̂(t) =
M−1∑
m=0

H(τm)NH
m, Gk(t) =

M−1∑
m=0

H(τm)GH
k,m

where NH
m and GH

k,m are the vectors of Hermite coefficients.
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Spline Representation using Bernstein Polynomials

00
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3rd oder Bernstein polynomials representations:

N̂(t) =
M−1∑
m=0

B3(τm)NB
m , Gk(t) =

M−1∑
m=0

B3(τm)GB
k,m

where NB
m and GB

k,m are the vectors of Bernstein coefficients.

The Bernstein and Hermite coefficients are linearly related as
GB

k,m = WGH
k,m, and NB

k,m = WNH
k,m.
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Why Bernstein Polynomials?

The Bernstein coefficients of the generation derivative are linearly
related with the Bernstein coefficients of the generation trajectory:

G ′k(t) =
M−1∑
m=0

B2(τm)G′Bk,m , G′Bk,m = KTGB
k,m = KTWTGH

k,m

Convex hull property of the Bernstein polynomials → trajectories
bounded of the convex hull formed by the four Bernstein points:

min
tm≤t≤tm+1

{BT
3 (τm)GB

k,m} ≥ min{GB
k,m}

max
tm≤t≤tm+1

{BT
3 (τm)GB

k,m} ≤ max{GB
k,m}

min
tm≤t≤tm+1

{BT
2 (τm)G′Bk,m} ≥ min{G′Bk,m}

max
tm≤t≤tm+1

{BT
2 (τm)G′Bk,m} ≤ max{G′Bk,m}
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Representation of Cost Function and Balance Constraints

Piecewise line continuous-time cost function can be written in terms
of the spline coefficients of generation trajectory:∫

T
Ck(Gk(t),G ′k(t), I ′k(t))dt = Ck(Gk ,G

′
k , Ik).

The continuous-time balance constraint is assured by balancing the
four cubic Hermite coefficients for each interval m:

K∑
k=1

GH
k,m = NH

m ∀m

One can deal with DC power flow nodal constraints similarly
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Simulation Results: IEEE-RTS + CAISO Load

The data regarding 32 units of
the IEEE-RTS and load data from
the CAISO are used here.

Both the day-ahead (DA) and
real-time (RT) operations are
simulated.

The five-minute net-load forecast
data of CAISO for Feb. 2, 2015 is
scaled down to the original
IEEE-RTS peak load of 2850MW,
and the hourly day-ahead load
forecast is generated where the
forecast standard deviation is
considered to be %1 of the load
at the time.
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Reduced Operation Cost and Ramping Scarcity Events

Case 1: Current UC Model

Case 2: The Proposed UC Model

Case DA Operation 
Cost ($) 

RT Operation 
Cost ($) 

Total DA and RT 
Operation Cost ($) 

RT Ramping 
Scarcity Events 

Case 1 471,130.7 16,882.9 488,013.6 27 
Case 2 476,226.4 6,231.3 482,457.7 0 
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Next steps

1 How can we calculate the continuous time price?

2 What is the best way of capturing the uncertainty of the net-load?
(Stochastic Continuous-Time UC?)

3 Can we also include other inter-temporal constraints (Energy:∫ t
t0

Gk(τ)dτ) and allow Demand Response and Storage (with negative
generation utility) submit a bid in the Whole Sale market

Thanks for Feedback and Questions...

Anna Scaglione (ASU) August 3, 2015 35 / 35


