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Objectives

Two threads of research — remove and anticipate system level roadblocks

for renewables & flexible demand integration

@ Model demand response in coupled infrastructures
o Electrified Transportation networks

o Competitive electric power market for power trajectories

o Addressing shortage of ramping
e Understanding how to express degrees of freedom much needed to
rebalance net-load
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Infrastructures of the future

Into the information age and Internet of Things (loT):

Large-scale data processing + real-time interactions with humans

Distribution

7 enerator Bu; o R
- SCADA
us/location

circuit ’ﬂ‘

Millions of control knobs for more efficient and sustainable demand, but:

1) We face challenges of dimensionality and stochasticity
2) Humans bring social and and economical issues into.control loops
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Concrete example: managing Electric Vehicle charge

o Electric Vehicles (EV): the fuel comes from the power grid
o Forecast — 64-86% of US sales by 2030 [CET, UC Berkeley]

We need: control scheme to incentivize EV drivers to charge their
batteries where and when electricity is abundant and cheap

’ Power System Operator

wholesale price
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Our previous work
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Contribution: enabling large-scale model-predictive scheduling
by systematically reducing model complexity
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Our previous work

wholesale price

Contribution: proposing an economic retail mechanism that
incentivizes customers to be green
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This year

‘ Power System Operator %—
wholesale price
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retail prices -

Contribution: designing wholesale prices considering the interconnection
between power and transportation systems
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Designing wholesale prices in coupled
infrastructure

Outline:

- Mathematical model for how a rational customer charges an EV
- Effect of individual choices on system load

- Design wholesale prices for socially-optimal system-level behavior
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The price design challenge: customer choice model

Extensive past research on EV load scheduling

@ Study of node-specific control algorithms by local retailers

= Target Outcome of
Post low price Control Mechanism
Post high price :> \

@ Aspect not often considered: EVs can move!

% Trip origin Destination

p1(t) p2(t) p3(t) pa(t) ps(t)

Can we safely ignore EV mobility when
modeling customers for designing prices?
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Individual customer choice model

Each link takes a certain amount of time and energy to travel:
e Ta(Aa), €a

Origin Destination

-
&Fast charging station

Individual Decision Variables:
@ Choice of path: k€ K

@ Choice of charge: at nodes visited on path
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Individual customer cost

Customer cost affected by the state (demand flows) of the 2 networks

A1 = [/\3]36«4’ A2 = [)\V]VEBy p= [pv]veB

@ Inconvenience cost for time en route:

sa(Aa) = 77a(Aa)

=
E. Fast charging station

e Traffic congestion tolls (b,)

@ Electricity costs at node v for charge e,
e charging rate = p,
e rate of EVs being plugged in = A,

bv(ev) = Pvéy, SV(eV7 )‘v) =7 <ev

+Tv()‘v)> :

v
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Solution: shortest path on a virtually extended graph

@ Charging has the same cost structure as traveling:
- it takes time
- it has a cost
- the battery energy level changes (it increases)

o Consider charging an extra trip

@ Adding virtual links to the original transportation graph

virtual links
corresponding to &;

-
= Fast charging station virtual links " g oo
corresponding to &

Customer choice model: charge and path decision

Find the shortest energy-feasible path on extended graph
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Individual customer optimization problem

Set of energy feasible paths

A path is energy feasible iff

I
0 < Initial charge — Z i-th link’s energy < Battery capacity, V/
i=1

Individual problem:

min{Cost for path k; k € set of energy feasible paths}

Why did we model the individual? We wanted to design electricity prices

Prices are not designed for individuals! They are designed for aggregates
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Aggregate effect of individual decisions

Aggregate behavior affects the state of two infrastructure systems:
@ Traffic congestion (flow on roads and into charging stations)
@ Electric load (flow on virtual links)

to power grid load don’t stop
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Mapping individual choices to network flow

@ Cluster customers' travel demand characteristics g (classic step in
transportation literature)

g € C (finite set)

o Feasible paths on extended graph for cluster g — k € K
@ a, = EV arrival rate in cluster g (given)
° d(’,‘ = rate of EVs in cluster g that take path k (customer decision)

@ Travel demand balance:

Zdé‘:aq

kEKq

Path to flow relation in static case

Ay = Z 5§d§ (Z path rates that include link a)
qeC.kekq
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Social costs in terms of individuals’' choices

Independent Independent
Transportation Power System
System Operator Operator
Congestion cost = s(road flows) Generation cost = ¢(virtual link flows)
: T .. .
Congestion cost = A" s(A) Electricity Cost = min17¢(g)

g
st. g"" <g=<gm,
e=M\A— 17(e+u—g)=0,
He+u—g)=<c,
Flow as a function of user decisions:

dg =0, 17dg =25, A=Y, 00qdg

If you control the flow A, you control traffic and energy costs )
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Social costs in terms of individuals’' choices

Independent Independent
Transportation Power System
System Operator Operator
Congestion cost = s(road flows) Generation cost = ¢(virtual link flows)
: T .. .
Congestion cost = A" s(A) Electricity Cost = min17¢(g)

g

s.t. gminjgjgmax,
e=M\A— 17(e+u—g)=0,

He+u—g)=<c,

Flow as a function of user decisions: 1
d, = 0, leq =ag, A= qug A dg

But, dgq and hence the flow A are the results of individuals decisions J
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Optimal pricing: results

1) Welfare maximizing price design

A social optimizer can jointly calculate:
@ Locational marginal electricity prices;
@ Tolls to be assessed at all roads;
© Congestion mark-ups for limited charging station capacity;

such that Wardrop equilibrium with cost-minimizing decisions of individual EV
drivers will be socially optimal.
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Optimal pricing: results

1) Welfare maximizing price design

A social optimizer can jointly calculate:
@ Locational marginal electricity prices;
@ Tolls to be assessed at all roads;
© Congestion mark-ups for limited charging station capacity;

such that Wardrop equilibrium with cost-minimizing decisions of individual EV
drivers will be socially optimal.

2) Collaboration between power and transportation system operators

Efficient market-clearing prices can be posted through a ex-ante collaboration
between the power and transportation system operators following a dual
decomposition algorithm.

3) The cost of operators not talking!

Reserve generation capacity so power system operators can learn EVs' response.
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Pricing without considering EV mobility

@ Power system operator cannot model EV mobility!

@ lterative procedure:

@ Step 1: design electricity prices, taking charge decisions as exogenous
© Step 2: Find socially optimal travel and charge plan taking electricity

prices as exogenous

Power system b Transportation System

=

/@ Locational marginal pric\e
[ —
v —

. Charging plan

[
E
Vi
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Numerical experiment - Setting

@ Static setting based on IEEE 9 bus test case
e Transportation graph with one O-D pair: (Davis, San Jose)

Winters 5

65 Davis

Fairfield

60

Fremont

60

Mtn. View
40

San Jose

—. Power General E
ower Generator Load Buses

All EVs consumes 1 kWh each 25 miles
Cost of unit time spent en route: v = 1073/3 $ / 5 min.
Flow to travel time mapping:

Ta(Xa) = Ta + Xa/10*
@ Rate of travel: 2000, 10000, 10000 EVs, each with initial charge of 2kWh, 3kWh and 4kWh, respectively
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Joint vs. disjoint marginal pricing of power and traffic

Limit-cycle behavior seen in load values at different iterations

I Joint | DP (iter. odd) | DP (iter. even)

Davis 91.67 MWh 110.0 MWh 15.411 MWh
©$53.43/MWh | ©@$54.49/MWh | ©$66.45/MWh

Winters 35.27 MWh 4.921 MWh 46.12 MWh
©$51.76/MWh | ©$54.49/MWh | ©$44.50/MWh

Fairfield 18.82 MWh 15.93 MWh 84.12 MWh
©$52.09/MWh | ©$54.49/MWh | ©$48.84/MWh

Fremont 0.211 MWh 7.819 MWh 0.00 MWh
©$52.33/MWh | ©$54.49/MWh | ©$51.93/MWh

Mtn. View 0.103 MWh 7.326 MWh 0.00 MWh
©$52.85/MWh | ©@$54.49/MWh | ©$58.85/MWh
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Next steps

@ We saw the emergence of coupled infrastructure due to EVs
o We have shown numerically that ignoring this coupling can be
dangerous to the grid

@ We saw how we can control such systems in an ideal world
We need to tackle

& N A\
S
& f
'z} %
&
QO
Price response | | Dispatch

|R(:te1‘ilcr|
|Retailer|
|R,91,ailer

Temporal dynamics + system not at equilibrium + humans not rational

Need to maintain compositionality — Inter-layer decoupling to prevent
formation of highly complex systems
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Higher Goal: Sustainable intelligent coupled infrastructure

Resilient interdependent human-cyber-physical systems
e.g., power, water, and data networks in smart cities

@ Significant flexibility in electricity consumption supports the delivery
of goods and services by other networked infrastructure

@ Solution steps:

© Systematic and case-dependent reduced-state modeling + control
© Modeling retailer and human behavior in the control loop
© Layered solutions that don't need centalized collaboration
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Unit Commitment with Continuous-time
Generation and Ramping Trajectory

Outline:

- Why the UC problem poorly schedules for ramp resources

- From Continuous Time UC to a tractable representation for Power
Trajectories

- Solution of the Continuous Time UC and advantages
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Motivation

CAISO Net Load --- 2012 through 2020
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This is our focus

Watts (Continuous)

@ Problem: Shortage of ramping resources in the real-time operation of
power systems — ramping is not appropriately incentivized

@ Flexible ramping products in CAISO and MISO: 1) complicate the
market; 2) what is the reasonable level of cost allocation?
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Interpretation of Current UC practice

@ Current UC practice: schedule of hourly energy by the generating

units — piecewise constant generation trajectory

@ Trajectory Interpretation: Hourly ramping constraints — piecewise

linear generation trajectory

N (1)
A
N NGT)
e NQT)
o N(23T)
TR N(24T)
Iy,

!

T 27 3T 47 ST 6T 23T A7
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Continuous-time UC Formulation

@ A set of K generating units are modeled by:
Generation Trajectory: G(t) = (Gy(t),..., Gk(t))"
Ramping Trajectory: G'(t)=(GJ(t),..., Gk (t))"
Commitment Status: 1(t)=(l(t),. .., Ik(t))"
h(t) = Spk (ut = 65) = u(e = ¢£))
Cost Function: Ci(Gk(t), G, (t), [, (t); t)
e Continuous-time UC:

K
min kZI/TCk(Gk(t),Gk(t),/k(t))dr

K
st. Y Gi(t) = N(t) Vte T
k=1

Gyli(t) < G(t) < Gli(t),  Gili(t) < Gi(t) < Gli(t)
S — 8D > Tl 8D D > Ty hte T
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Defining cost in the (Gk(t), G,(t)) plane

@ ldea: If we need more ramp in addition to representing better the
need for ramp, why not allowing bids that include a cost for ramp?
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Generation and Load Trajectories in a Function Space

Assume that in the horizon T, except for a small residual error, N(t) lies
on a countable and finite function space of dimensionality P, spanned by a
set of bases functions e(t) = (e1(t),. .., ep(t)):

Z/\/e,, ) + en(t) = e(t)N + ep(t)

N = (Ny,...,Np)T are the coordinates of the approximation onto the
subspace spanned by e(t). Also, any generation trajectory has a
component is in the same subspace spanned by e(t) and a component
orthogonal to it, i.e.:

Z Gipep(t) + €6, (1) = e(t)Gr + e, (¢).
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Spline Representation using Cubic Hermite Polynomials

@ Day-ahead scheduling horizon 7T is divided into M intervals, edges
05 ty, t2, -, tm-
@ Splines of order > 1 allow to encode ramping information explicitly.

@ Cubic Hermite basis functions: four polynomials of third order in
t €[0,1), vector: H(t) = (Hoo(t), Ho1(t), Hio(t), H11(t))

t—t ..
Hij(Tm) = Hjj <’"> , 1,j€{0,1}, tym <t < tmi1
tm—|—1 —tm
@ Load and Generation trajectory in cubic Hermite spline function space:
M-1 M-1
N(t) = H@Ea)NL,  G(t) = Y H(7m)GY
m=0 m=0

where N and G} are the vectors of Hermite coefficients.
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Spline Representation using Bernstein Polynomials

G (1) G, (1) G

G Gen
Giﬂ B3
- - o
‘ Gll ‘ i

k,m

M-1 M-1
N(t) =" Ba(rm)NG, . Gi(t) = D Bs(mm)GE

where NB and GB  are the vectors of Bernstein coefficients.
@ The Bernstein and Hermite coefficients are linearly related as
B _ H B _ H
G, = WG and N - = WN/ .

k,m?
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Why Bernstein Polynomials?

@ The Bernstein coefficients of the generation derivative are linearly
related with the Bernstein coefficients of the generation trajectory:

Gli(t) = Z BZ(Tm) ;fm ) G;fm = KTGE,m = KTWTGIIj,m

@ Convex hull property of the Bernstein polynomials — trajectories
bounded of the convex hull formed by the four Bernstein points:

min  {B] (7m)Gf n} > min{G{ .}

tm<t<tmi1
< B
_max (BI(rm)GE ) < max(GE,,)
i >
tmgr?glrgmH{B2(Tm)G '} mln{G
max {BJ (Tm)G }<max{G

trngtgtm 1
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Representation of Cost Function and Balance Constraints

@ Piecewise line continuous-time cost function can be written in terms
of the spline coefficients of generation trajectory:

/7— Ck(Gk(t), G;((t), /,/((t))dt = Ck(Gk, G;(, Ik)~

@ The continuous-time balance constraint is assured by balancing the
four cubic Hermite coefficients for each interval m:

K
> Gl =N vVm
k=1

@ One can deal with DC power flow nodal constraints similarly
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Simulation Results: IEEE-RTS + CAISO Load

@ The data regarding 32 units of 000
the IEEE-RTS and load data from . @ = DR Clbt Hamieloat
the CAISO are used here. 2500 // \

@ Both the day-ahead (DA) and g w0 1 \ /”“""‘”’—
real-time (RT) operations are § =0 ,

simulated. 2000 N /

@ The five-minute net-load forecast

data of CAISO for Feb. 2, 2015 is L0 P 4o e M wow w W om 2o
scaled down to the original o I (b) [ _DAGHcHemied
IEEE-RTS peak load of 2850MW, £ /

and the hourly day-ahead load &

forecast is generated where the 3

forecast standard deviation is ? )

considered to be %1 of the load E

at the time.
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Reduced Operation Cost and Ramping Scarcity Events

@ Case 1: Current UC Model
@ Case 2: The Proposed UC Model

A DA Operation | RT Operation | Totd DAandRT | RT Ramping s
Cost ($) Cost ($) Operation Cost ($) | Scarcity Events =
Casel 471,130.7 16,882.9 488,013.6 27 2
Case2 476,226.4 6,231.3 482,457.7 0 B
o
8
& <
gz @ . 2
§
3 18 | [ s Half-hourly UC - [}
2
E L]
g 14 L]
s am L -
® 10 " ik R
& s
2 6 .‘ LR o’ .
5 . g
3 s
g , =
300 350 400 450 500 3
Day-Ahead Operation Cost (Thousands $) £
7% 2
2 = Proposed UC (b) §
13 ourly UC g
a = Half-hourly UC 2
S 45 ©
o 30
£ o 2 a4 6 8 10 12 14 16 18 20 22 24
% 15 Hour
4 | I“ ||| | | | | | | || | | | = Group 1 Hydro = Group 2: Nuclear = Group 3: Coal 350 = Group 4: Coal 155 = Group 5: Coal 76
o | L g v | N LIk = Group6: il 100 _m Group 7: Ol 197 _m Group 8: Oil 12 = Group 9: Oil 20
Days
5 = E =
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Next steps

©@ How can we calculate the continuous time price?

@ What is the best way of capturing the uncertainty of the net-load?
(Stochastic Continuous-Time UC?)

© Can we also include other inter-temporal constraints (Energy:
ft[t) Gk(7)dT) and allow Demand Response and Storage (with negative
generation utility) submit a bid in the Whole Sale market

Thanks for Feedback and Questions...
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