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The Problem of Variability in Power Systems

Existing operational tools and electricity market designs not equipped to
efficiently accommodate variability in renewable supply at scale.

1 Predominant approach to economic dispatch makes inefficient use of
information

2 Existing market designs reflect this inefficiency of operation and rely on
ad hoc schemes to allocate the cost of variability (e.g., A/S costs) to
market participants

H. Madsen et al. (2011). Forecasting Wind and Solar Power Production.
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Broad Project Objectives

(A) Develop computational tools to manage uncertainty in power system
operations

• data driven

• computational scalable

• provable performance guarantees

(B) Design novel market systems that:

• provide a competitive medium through which variable power producers
can sell their supply on equal footing with conventional power producers.

• efficiently reflect and allocate the cost of uncertainty owing to variable
renewable generation.
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The Power System Model

The power system is modeled as a partially-observed linear stochastic
system:

xt+1 = Axt + But + Gwt

yt = Cxt + Hwt

for all t = 0, . . . ,T .

• xt ∈ Rnx (state) generator operating points, energy storage levels, etc.
• ut ∈ Rnu (control) generator and storage power injections
• yt ∈ Rny (measurements) partial noisy observation of system state
• wt ∈ Rnw (exogenous random process) wind, solar, demand, etc.

Notation
• x t = (x0, . . . , xt) ∈ Rnx(t+1) – history of process until time t
• x = (x0, . . . , xT−1) ∈ RnxT – history of a enitre process
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The Power System Model

The power system is subjected to linear constraints

Fxxt + Fuut + Fwwt ≤ g,

which we enforce probabilistically as

Prob {Fxxt + Fuut + Fwwt ≤ g} ≥ 1− ε

for all t = 0, . . . ,T , where ε ∈ (0, 1].

• Uncertainty in renewable supply, demand, network line outages

• Transmission network constraints subject to linearized power flow

• Resource constraints – storage, generator ramping, flexible demand

• Doesn’t capture AC power flow or unit commitment decisions

Model Features
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The Stochastic Economic Dispatch (SED) Problem

Compute a causal output-feedback dispatch policy π = (µ0, . . . , µT−1)

ut = µt(y0, . . . , yt)

that solves chance constrained stochastic control problem:

(P) minimize
π

Eπ

[
x ′T QxT +

T−1∑
t=0

x ′tQxt + u′tRut

]
subject to Prob {Fxxt + Fuut + Fwwt ≤ g} ≥ 1− ε

xt+1 = Axt + But + Gwt

yt = Cxt + Hwt

ut = µt(yt), t = 0, . . . ,T .

We assume convex quadratic costs, Q,R � 0.
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Why is Problem P Difficult to Solve?

In general, problem P is difficult to solve...

• Infinite-dimensional in its optimization variables
• Nonconvex in its feasible region
• Requires specification of a prior probability distribution

We reformulate problem P as a finite-dimensional convex program that:

• is computationally scalable,
• requires minimal distributional information,
• admits computable performance guarantees,
• and enables the systematic trade off between computational burden and
performance.
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Policy Approximation
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An Output Transformation

Define the purified observation process zt = yt − ŷt , where

x̂t+1 = Ax̂t + But and ŷt = Cx̂t

The purified output zt can be thought of as an output prediction error.

1 {zt} generates the same amount of information as {yt}

σ(z0, . . . , zt) = σ(y0, . . . , yt).

2 {zt} is independent of the control process {ut} and satisfies

zt = Ltwt ,

where the matrix Lt is easily constructed from problem data. We
write the entire purified output vector as

z = Lw.

Lemma (Kailath ’68, Ben-Tal et al. ’09, Hadjiyiannis et al. ’10)
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x̂t+1 = Ax̂t + But and ŷt = Cx̂t
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Purified Output-Feedback

Reparameterize the causal feedback policies in the purified observation {zt}:

(P̂) minimize
π

Eπ

[
x ′T QxT +

T−1∑
t=0

x ′tQxt + u′tRut

]
subject to Prob {Fxxt + Fuut + Fwwt ≤ g} ≥ 1− ε

xt+1 = Axt + But + Gwt

zt = Ltwt

ut = µt(z t), t = 0, . . . ,T .

• Eliminates dependency of observations on control inputs

• This is without loss of optimality, i.e. problem P̂ equivalent to P

• Problem P̂ still intractable however....
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A Finite-Dimensional Approximation of the Policy Space

Restrict the space of admissible control policies to those representable as finite
linear combinations of a preselected basis functions φt = (φ1

t , . . . , φ
nt
t )′,

ut = Ktφt(z t) =

 |K1
t

|

φ1
t (z t) + · · · +

 |Knt
t

|

φnt
t (z t)

where Kt ∈ Rnu×nt is matrix of weighting coefficients.

We write the entire input vector as u = Kφ(z), where
u0

u1
...

uT−1

 =


K0 0 · · · 0

0 K1
...

...
. . . 0

0 · · · 0 KT−1




φ0(z0)
φ1(z1)

...
φT−1(zT−1)
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Reduction of P to a Chance Constrained Program

Given a restriction to dispatch policies of the form

u = Kφ(z), where z = Lw,

problem P reduces to a finite-dimensional chance constrained program

(CCP) minimize
K

tr(MφK ′VK) + tr(NφUK)

subject to Prob {EtKφ(z) + Ftw ≤ gt} ≥ 1− ε

t = 0, . . . ,T

K = diag(K0, . . . ,KT−1)

Moment matrices given by Mφ := E [φ(z)φ(z)′] and Nφ := E [φ(z)w′].

Proposition

Matrices V � 0, U , and {Et ,Ft , gt} are computed from the primitive data.
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Reduction to a Chance Constrained Program

(CCP) minimize
K

tr(MφK ′VK) + tr(NφUK)

subject to Prob {EtKφ(z) + Ftw ≤ gt} ≥ 1− ε

t = 0, . . . ,T

K = diag(K0, . . . ,KT−1)

• CCP is a inner approximation of the original problem P

• Objective is convex

• Feasible region is nonconvex, in general

There is a rich literature1 on convex approximations of chance constraints
• convex inner approximations
• randomized convex approximations

1. Nemirovski et al. (2006). Convex approximations of chance constrained programs
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Chance Constraint Approximation
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A Scenario Constrained Program

Define the Scenario Constrained Program induced by CCPε as

(SCPN ) minimize
K

tr(MφK ′VK) + tr(NφUK)

subject to EtKφ(Lwi) + Ftwi ≤ gt

t = 0, . . . ,T

i = 1, . . . ,N

where (w1, . . . ,wN ) are N i.i.d. samples of the random vector w.

Definition

SCPN is a random convex quadratic program (QP)
• However, solutions to SCPN are random and may not be feasible for CCPε

• How large does N have to be?
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Bound on the Number of Scenarios

The following result is an immediate consequence of Campi et al. (2008).∗

Fix a choice of basis φ and a probability level ε ∈ (0, 1). If

N ≥ 1
ε

(
ln 1
β

+ 1 + nu · card(φ)
)
,

then an optimal solution to SCPN will be feasible for CCPε with probability
greater than or equal to 1− β.

Theorem

∗M.C. Campi et al. (2008).The exact feasibility of randomized solutions of uncertain convex
programs.
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Discussion of SCPN

How does SCPN fair as a surrogate the original stochastic control problem P?

Minimal Distributional Assumptions
• Results hold for any distribution on w
• Ability to procure independent samples of w

Polynomial-Time Complexity
• SCPN is a convex QP
• It has dimension = poly(ny,nu ,T), if card(φ) ≤ poly(ny,T)
• Not exponential in the horizon T ....

Fidelity
• Optimal solution to SCPN is feasible for P with probability 1− β
• Richness of basis φ controls fidelity of approximation
• Similar techniques can be applied to obtain dual lower bounds for P
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Numerical Experiment
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Test Case Description

We consider a modified IEEE 14-bus power system dispatched over T = 12
hours.

• Constrained DC power flow

• Dispatchable thermal generation

• Energy storage

• Wind generation (30% penetration)

System Features

Wind power data acquired from NREL Eastern Wind Integration and
Transmission Study (EWITS).
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Experiment Description

• Constraint probability, ε = 0.1

• Approximation confidence, β = 0.001
• Basis, φ = {set of all d-degree monomials} in z

- d = 1 (affine control policies)
- d = 2 (quadratic control policies)

Parameters

1 Fix the degree d

2 Set the sample size N = N (ε, β, φ), where

N (ε, β, φ) = 1
ε

(
ln 1
β

+ 1 + nu

(
T · ny

d

))
3 Solve 100 instances of SCPN

Procedure
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Empirical Results

Optimal cost distribution of SCPN vs. d
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There is a 36% reduction in average cost in moving from affine (d = 1) to
quadratic (d = 2) policies.
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