Navajo Nation Solar Air Heater Project

Presented by:
Nicholas Riedel

Presentation Overview

1) Project background
2) How solar air heating works
 • Construction
 • Benefits
 • Challenges
3) Next steps
1300 collectors were removed from a building in Denver and distributed to chapters on the reservation.

<table>
<thead>
<tr>
<th>Recipient</th>
<th>Org. Type</th>
<th># Shipped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crown Point College</td>
<td>College</td>
<td>112</td>
</tr>
<tr>
<td>Eagle Energy</td>
<td>Non-Profit</td>
<td>104</td>
</tr>
<tr>
<td>Forgotten People</td>
<td>Non-Profit</td>
<td>53</td>
</tr>
<tr>
<td>Gallup Solar</td>
<td>Non-Profit</td>
<td>112</td>
</tr>
<tr>
<td>Ind. Energy Center</td>
<td>Business</td>
<td>224</td>
</tr>
<tr>
<td>Leupp Chapter</td>
<td>Gov.</td>
<td>112</td>
</tr>
<tr>
<td>Ojo Encino Chapter</td>
<td>Non-Profit</td>
<td>224</td>
</tr>
<tr>
<td>San Juan College</td>
<td>College</td>
<td>48</td>
</tr>
<tr>
<td>Tsidi To'ii Chapter</td>
<td>Gov.</td>
<td>232</td>
</tr>
<tr>
<td>Tolani Lake Chapter</td>
<td>Gov.</td>
<td>112</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>1333</td>
</tr>
</tbody>
</table>
Eagle Energy held workshops to train recipients on proper collector installation.

- Over 50 participants.
- Included instruction on retrofit, use, and installation.
- Part of entrepreneurial program to distribute systems.
Old fiberglass insulation needs replacement.

Inside the air collectors:

- Black chrome metal surface (absorbs 95% of the sun’s energy)

- Old fiberglass insulation needs replacement
Air flow inside the collector:
One collector can heat outside air by 60 to 90 degrees Fahrenheit.

Data collected in Albuquerque, February 2014
There are five major components:
Some general rules on sizing

• One 3’x6’ collector can heat about a 500ft² space.
 – Accurate sizing is really done based on the total heat load of the building (f-chart model).

• The blower is sized based on collector area (ft²).
 – We think 8 cfm/ft² is sufficient
 • Example: 144 cfm for an 18ft²
 – Need to consider the building’s static pressure when sizing the blower (fan curve).
 • A S.P. of 0.75” wg is a typical value for a home/residence.

• The tilt of the collector should be steep (> 55°)
 – Sun is lower in the sky in the winter
 – Better harness the sun’s energy in the early morning.
Some general economics

• The payback period depends on:
 – The site location (solar resource and shading)
 – Type of heating fuel used (LPG, wood etc)
 – Amount of thermal mass in the home (brick, wood etc)

• We estimate the ‘real’ cost of a system is
 – 1 collector system: $800
 – 2 collector system: $1000
 – 3 collector system: $1250

• System offsets about 30% of the heating demand
 – We estimate pay back periods of 4 to 16 years
 – Difficult to quantify the health benefits
Challenges

• Only meets roughly 30% of heating demand.
 – Back up heating sources are required
• The upfront cost is significant for low income individuals and families.
 – Typically not the first priority first renewable energy choice.
 – Grid connection to run the blower.
• Educating potential users about the technology
 – Many people are unfamiliar with it and its benefits
Over 875 solar air heaters have been installed in Pine Ridge, SD. (Lakota)

• Effort led by NGO Trees, Water & People.
• Manufactured and installed by Native Americans.
• 10 day trainings at Red Cloud Renewable Energy Center.

Straw bale housing with solar heating at the Red Cloud Renewable Energy Center in Pine Ridge, SD.
Next steps

• Partner with NREL to dive deeper into technical analysis and feasibility study.
• Recruit entrepreneurs in multiple agencies to help distribute more systems.

Interested in getting a system?
Contact Julia Alvarez
JuliaAlvarez@ElephantEnergy.com
(720) 446-8609

Technical questions?
Contact Nick Riedel
Nick.Riedel@cfvsolar.com
(858) 342-2515