

Nuclear Energy

Office Of Nuclear Energy Advanced Sensors and Instrumentation Annual Review Meeting

Operator Support Technologies for Fault Tolerance and Resilience Rick Vilim (ANL) Ken Thomas and Ron Boring (INL)

September 17, 2014

Project Overview (1/3)

Nuclear Energy

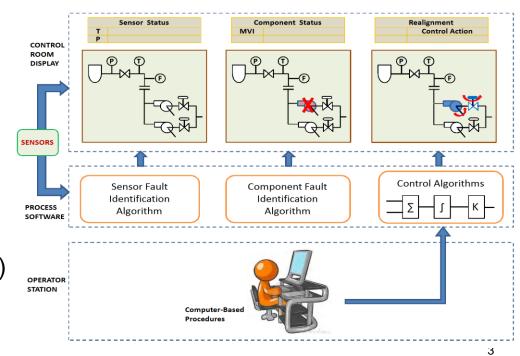
Background

- Automated systems perform more reliably than humans at rote tasks such as procedures-driven control actions. Humans on the other hand perform much better at system oversight, evaluating complex situations and formulating an appropriate response.
- Advanced equipment fault-detection and identification algorithms can provide the plant operator with tools for a more informed response to equipment faults. Computer-based operator advisory system will permit the operator's response to be more timely compared to one initiated through paper-based procedures

Goal

 To improve operational reliability, improve nuclear safety, and reduce human error through the development of advanced NPP computer-based operator support technologies.

Project Overview (2/3)


Nuclear Energy

Objectives

- Develop technology to assist and support operators with complex fault diagnosis and selection of appropriate mitigation control actions
 - Advises NPP control room operators of the time-critical plant conditions and allows them to enable an automated response to mitigate the fault.
- Develop the underlying fault detection and diagnosis algorithms
- Demonstrate on full-plant simulator

Participants

- Rick Vilim (ANL)
- Ken Thomas, Ron Boring (INL)

Project Overview (3/3)

Nuclear Energy

■ Sch	edule	
	Year	Task
	1	INL - Identification and classification of internal faults/degradation along with prioritization. Analysis of likelihood of continued operation.
		ANL - Conceptual development and initial coding of detection and identification algorithms.
	2	INL - Acquire plant simulator for a representative light water reactor plant. Develop concept of Computer Operator Support System
		ANL - Begin testing fault detection and identification software in standalone fashion using simulator-based test-bed.

Accomplishments (1/8)

Nuclear Energy

Design to Achieve Fault Tolerance and Resilience, INL/EXT-12-27205, September 2012.

- Describes opportunities for replacing procedure-based manual control with automated control
- Describes issues and approaches associated with NPP run-back to house loads following loss-of-load transient

Description of Fault Detection and Identification Algorithms for Sensor and Equipment Failures and Preliminary Tests Using Simulations, ANL/NE-12-57, November 30, 2012.

- Presents findings of review of the PRODIAG software developed at ANL for diagnosing component faults in nuclear power and process industry plants
- Describes plan to modernize the PRODIAG software so that its automated reasoning (AR) capability is more maintainable and extensible. Essentially a rewrite of the software suing current generation AR coding techniques.

Accomplishments (2/8)

Nuclear Energy

A Computer Operator Support System, INL/EXT-13-29561, August 2013.

- Describes the architecture and design of planned COSS and first-phase implementation of computer-prompted procedures on full-scale simulator.
- Comprehensive Tests of Fault Detection and Identification Algorithms for Sensor and Equipment Failures Using Simulations, ANL/NE-12-57, September 30, 2013.
 - Describes results of simulation-based tests of component fault-diagnosis and sensor validation algorithms and software. Sensitivity of fault diagnosis characterized with respect to sensor types and numbers and to the severity of fault.

Invited Article

• R.B. Vilim, et al., "Monitoring and Diagnosis of Equipment Faults," Nuclear Engineering International, November 2013.

Accomplishments (3/8)

Nuclear Energy

- Readied Full-Scale Simulator (DOE Human Systems Simulation Laboratory or HSSL, located at Idaho National Laboratory)
 - Prepared target platform for implementation of COSS computer-prompted procedures and follow-on human factor studies

Accomplishments (4/8)

Nuclear Energy

Developed Computer Operator Support System Prototype

• Designed protocols for operator interaction with computer-prompted procedures and programmed these on full-scale simulator

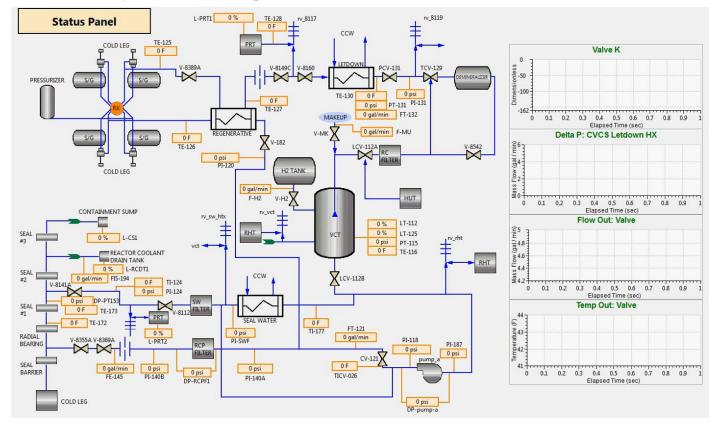
Accomplishments (5/8)

Nuclear Energy

Developed Computer Operator Support System Prototype (cont'd)

- Defined and developed the operator alarm display
- Developed and demonstrated the fault scenario

\sim	CC	P & IDs	Warning	(1 of 1)	Diagr	nosis			Enable	- 100	VCT Level	- 100	RMWST Level
CV		Procedures		dentified Loss of RCS Inventory.	Id	entified 99.9% probability of leak in De			Reset		-		
CO	SS	Trends		Shot clock: 00:05:39		System state warrants	-		Reset	0	= 34 %		55 %
		Trends		SHOL CLOCK: 00:05:59		Disregard this warn	ing for 5 minutes.	Disregard		- 100	34 % VCT Press		RMWST Press
AOP - 16													
AOP-016 Excessive Primary Plant Leakage													
	pose Leakage f	rom outside	of CNMT (C	/CS)						- 30	25 PSIG VCT Temp		79 PSIG egen HX Out T
Entr	ry Conditi	ions											_
			CS inventory							50		100	-
	Status:								E		100 F harging Press	200	306 F LD HX Out T
		entified 99.9	9% probabilit	y of a leak in the									
		ralizer Syste		1							-		
											577 PSIG Tharging Flow	_ 50]	116 F LD Pressure
		Go to Step 1											
Operator Actions			<u>Re</u>	sponse Not Obtained				0	= 90 GPM		350 PSIG		
	1. Check	k RHR in ope	eration			Go To Step 3.					hrg HX Out T		Letdown Flow
	Stat	us:											-
	RHR	is not in op	eration.			Go to Step 3.				100		0	80 GPM
						•				100	Boric Acid Lev	- 150	CS-151 Flow
		AOP-020 Lo tory Residua				Go To Step 3.							
		val While Shi								0	84 %		0 GPM
					_	Co To Stop 4				- 10000	RCS Boron	_ 110	Power
		To PEP-110	n			Go To Step 4.			Ŧ				
	Autor	natic Execution is r	not available				Clear Procedure	Proced	lures List				
										2	514 PPM	1	100 %

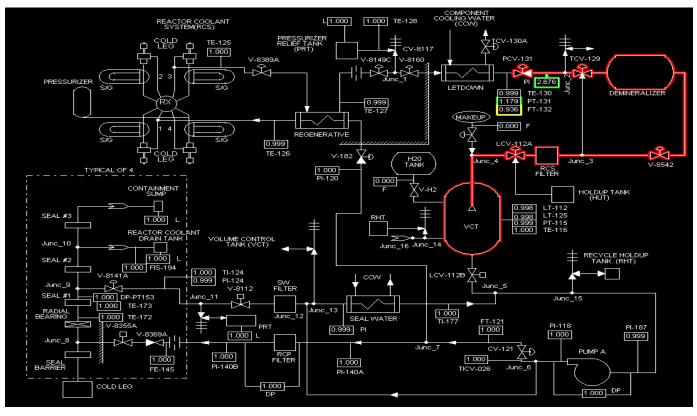


Accomplishments (6/8)

Nuclear Energy

Created Test-Bed for Fault Diagnosis Algorithms

 Generated Chemical and Volume Control System (CVCS) simulation data with capability for injecting faults

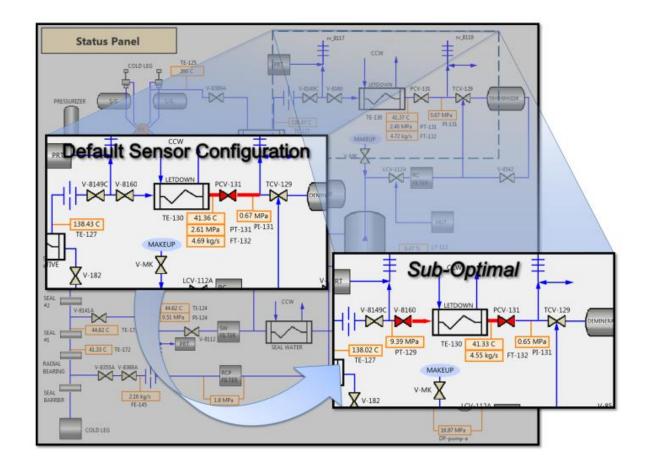


Accomplishments (7/8)

Nuclear Energy

Performed Equipment Fault Diagnosis Studies on Test-Bed

• Fault detected before operator sees It


GUI Highlighting Location of Fault in CVCS

Accomplishments (8/8)

Nuclear Energy

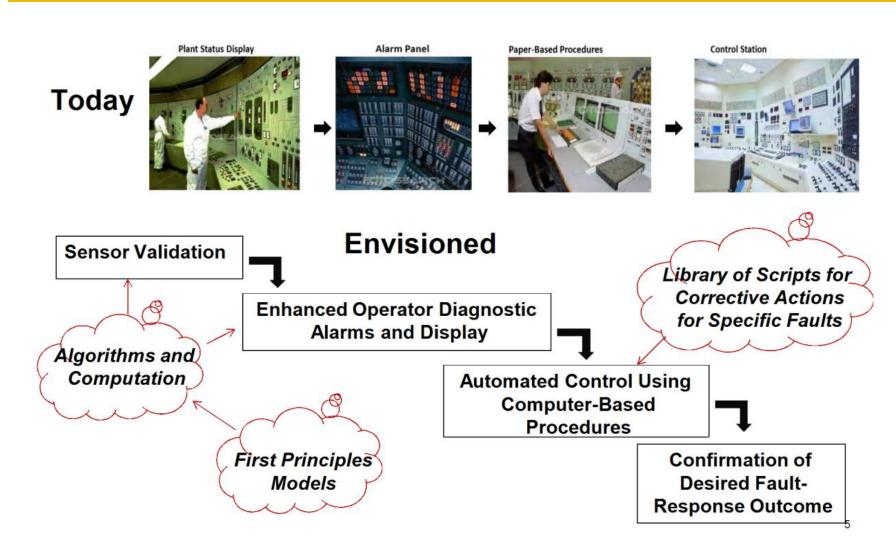
Characterized Sensitivity of Fault Diagnosis to Types and Numbers of Sensors and to Severity of the Fault

Technology Impact (1/2)

Nuclear Energy

Diagnosis of Component Faults Presently Limited by the Need for Operator Reasoning at the Sensor Level

- This work, through quantitative reasoning, elevates these tasks to the level of the component and its system allowing for more informed operator control actions
- Method is generic and applicable to industrial processes nuclear power, oil and gas, etc.
- Improve plant safety with respect to faults through quantitative reasoning


Events Handled Manually by Operators Could Benefit from New Technology that Combines the Best of Both: Fast Automatic Response with Accurate Diagnosis and Nuanced Actions

• Would mitigate plant transients much quicker and avoid reactor trips and safety system actuations

Technology Impact (2/2)

Nuclear Energy

Conclusion

Nuclear Energy

Next-Generation Operator Support Technology

- Improves operational reliability
- Improves nuclear safety
- Reduces human error
- Directly Supports Future Projects in the LWRS II&C Pathway
- Enables Advanced Concepts of Operation for New Reactor Types
- Supports the Advanced Distributed Control Systems Now Being Implemented in Many of the Current Operating Plants