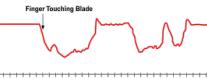


Nuclear Energy

Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting

Embedded Instrumentation and Controls for Extreme Environments Roger Kisner Oak Ridge National Laboratory

September 16-18, 2014


Project Overview

Nuclear Energy

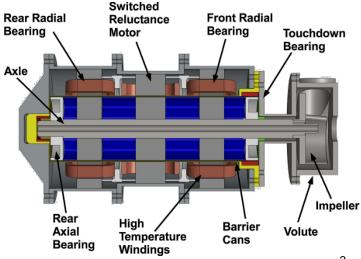
Goal and Objectives

- Demonstrate performance/reliability improvements possible in major **power reactor system** components when sensors and controls are deeply integrated
- Embedded S&C enables faster control reaction and increased stability in the event of component failures compared with traditional control
- Makes stable inherently unstable configurations → smaller, lower mass, lower cost, more reliable
 - Railroad—AC traction drive locomotives enables 50% thrust increase
 - Industrial tools—Sawstop[®] prevents saw blade amputations
 - Aircraft/Aerospace—stabilizing fundamentally unstable wing configuration
 - Electric grid—Being Applied to Monitoring and Control of Power Distribution (\$B)
- We are building a canned rotor coolant pump as a way to demonstrate embedded I&C in components —design, fabricate, and demonstrate

Sawstop[®] Blade Current Signal

Delta Wing Aircraft

ynamic System



Project Overview (2)

Nuclear Energy

Participants (first year, all ORNL staff)

- Roger Kisner—Principal Investigator, Control Systems, Sensor Systems, Magnetic Design, Electronics Design
- Alexander Melin—Control Systems, Mechanical Systems, Modeling and Simulation
- David Fugate—Control Systems, Electronics Design
- David Holcomb—Sensor Systems, Material Science
- Tim Burress—Sensor Systems, Motor Design, Electronics Design
- Dane Wilson—Material Science
- Summer Interns:
 - Electrical Engineering
 - Mechanical Engineering
 - Physics

FY-2013 Accomplishments

Nuclear Energy

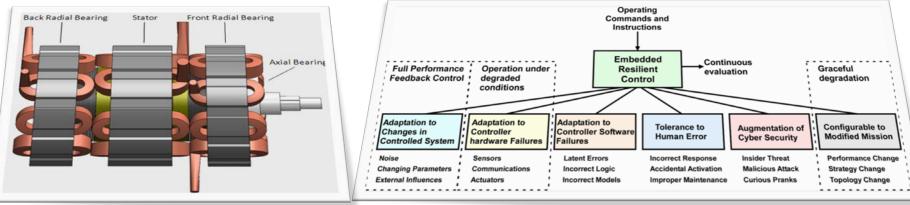
TASK 1: Model sensors and controls for canned rotor magnetics

- **PURPOSE:** magnetically suspended, canned rotor design cannot be operated without embedded S&C because of speed of response. Task was to understand dynamic mechanical system performance and potential degradations to create sensor, actuator, and control system
- WORK PRODUCT/DELIVERABLE: Models and simulation results of sensors and controls for the magnetic suspension and drive system
- MILESTONE: September 30, 2013, report Embedded Sensors and Controls to Improve Component Performance and Reliability – System Dynamics Modeling and Control System Design, ORNL/TM-2013/415

TASK 2: Assess methods of fabrication and assembly

- **PURPOSE:** *high temperature operation requires special materials and sensors.* Task was to understand materials, methods of fabrication, and methods of system assembly for machine design —sensors, actuators, and control systems
- WORK PRODUCT/DELIVERABLE: Evaluation of effective methods to fabricate motor components and assemble as a working unit
- **MILESTONE**: July 29, 2013, report *Evaluation of Manufacturability of Embedded* Sensors and Controls with Canned Rotor Pump System, ORNL/TM-2013/269

FY-2013 Accomplishments (2)

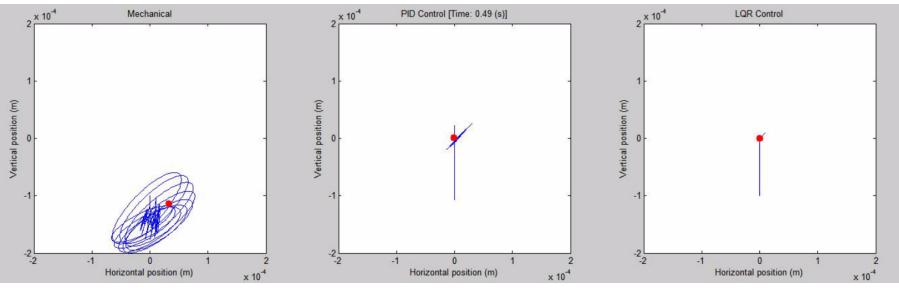

Nuclear Energy

Working concurrently with ORNL research group investigating reluctance motors for transportation applications

- Hardware is being adapted for bench scale testing
- Investigating the effect of gap and rotor can material (Alloy N)

Invited paper in IEEE I&M Magazine*

- Lead article in June 2013 edition Advanced Instrumentation for Extreme Environments
- Discusses challenges of harsh environments for a canned rotor motor with embedded control



* A. Melin, R. Kisner, and D. Fugate, "Advanced Instrumentation for Extreme Environments," IEEE I&M Magazine, Vol.16, No. 3, June 2013.

Results from Control Simulation

- Control strategy critical to optimize performance (simulation starts with rotor off-center)
 - Left: Mechanical springs (ex. journal bearings) oscillate due to shaft rotation and do not center the shaft
 - Center: PID control uncouples each axis and takes longer to reach equilibrium and has larger deviations from disturbances
 - *Right:* Linear Quadratic Regulator is a coupled control that quickly reaches equilibrium and is resilient to disturbances
- Simulation of 3-D rotor movement (graphs only show movement of rotor center-of-mass)

Planned Activities

Nuclear Energy

Year 1 — small scale development

- Design and build the bench-scale testbed (radial bearings and shaft position)
- Design and characterize sensors and actuators at high temperatures (especially induction type sensors)
- System identification and model validation
- Control system design and validation

Year 2 — loop-scale development

- Loop-scale testbed engineering analysis, design refinement, and finalization
- Finalize manufacturing and assembly drawings, requirements, and procedures
- Control system power electronics, hardware, algorithm, and software design and fabrication
- Loop-scale testbed manufacturing and assembly
- Year 3 install in water loop and test

Crosscutting Benefits

Nuclear Energy

Benefits of embedding are being validated and coordinated

- All nuclear power plant classes require coolant pumps
- Highly relevant demonstration in a representative environment

Pump seals and bearings are maintenance intensive

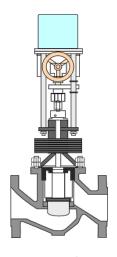
- Pump seals and bearings are have been historic source of problems in nuclear power applications
- Helium circulator seal leaks were a significant source of problems at Fort St. Vrain
- Pump seal leaks were root cause of Simi Valley sodium reactor accident
- Pumps possess large kinetic energy with potential for causing damage

What are the outcomes and measures of success

- Demonstration in a coolant loop system
- Future demonstration of embedded I&C in other reactor systems
- Demonstration that embedded I&C makes otherwise unattainable performance in nuclear power components possible

Crosscutting Benefits (2)

Nuclear Energy


Research directly benefits DOE-NE R&D programs and initiatives

- SMRs, Na reactors, gas reactors, and fluoride salt reactors
- LWR Life Extension
- Advanced Reactors (high temperatures)
- Space Power Systems

Embedding concept is relevant to many components of a nuclear reactor

- Pumps, control rod drives, valves, circuit breakers, ...
- Elevates components (and systems) to new levels of performance, stability, diagnostics, and prognostics
- Applies to primary systems and BOP components
- New reactor designs and retrofit

Resulting pump design is also applicable to solar thermal systems

Technology Impact

Nuclear Energy

Sensors and controls have not typically been embedded in nuclear power reactor components (compared with other industries)

- Advanced I&C technologies were not available in the first nuclear era
- Requires multi-disciplinary design effort I&C, mechanical and electrical engineering, materials science, and systems engineering
- Existing components have limitations for new reactor concepts

Required new component concepts may be inherently unstable

- Compact size
- Less bulk material to absorb transients
- Continuous high temperature operation

Embedded I&C stabilizes otherwise unstable configurations

- Intimate real-time control
- Reporting of degradation
- Appropriate responses to failure and degradation events
- Opportunity for fault-tolerant control

700°C Canned Rotor

Technology Impact (2)

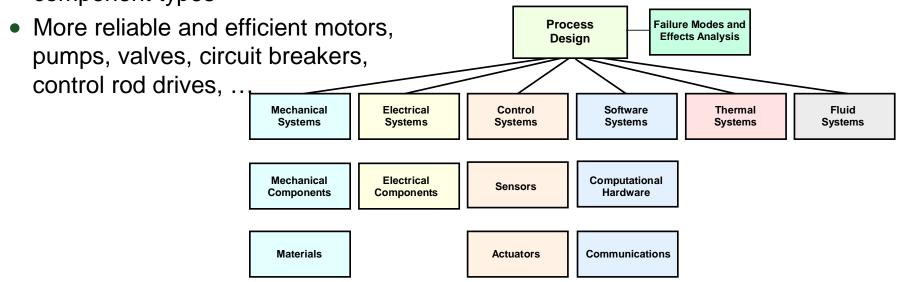
Nuclear Energy

Advancing the state-of-the-art in nuclear systems

- Traditional approach to large component design is to include mass, large margins, and tolerate inefficiency as cost of doing business
- Close coupling of I&C with electromechanical system components permits design with minimal mass and appropriate margins leading to lower cost, higher performance, and improved reliability (modern jet engines have experienced a **1000X reliability improvement** with embedded I&C)

Embedded I&C can help DOE-NE meet three of four primary research objectives

- ✓1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors
- 2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals
- ✓ 3. Develop sustainable nuclear fuel cycles
 - 4. Understand and minimize the risks of nuclear proliferation and terrorism



Technology Impact (3)

Nuclear Energy

Technology affects the nuclear industry

- Working system demonstration provides needed confidence to allow designers to rely on integrated measurements and controls to provide robustness and efficiency
- Embedding I&C where they have not been before in major components of a nuclear power plant changes capabilities and takes I&C to new level
- Integrated measurement and controls practices can be applied to many component types

Conclusion

- By successfully demonstrating the performance, reliability, and cost benefits of embedded I&C on a relevant prototypic reactor component, confidence is realized that can lead to major improvements in reactor system components for future plants
 - Improve the reliability, sustain the safety, and extend the life of current reactors
 - Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals

Nuclear Energy

Back Up Slides

Embedded I&C Is Being Applied to Monitoring and Control of Power Distribution Systems

- Embedded I&C will transform a static system into a dynamic system with distributed control control pushed to the outer limits of system
 - Distributed control large distances
 - High speed control response
 - Improved reliability (elimination of single point failure)
- Potentially save \$billions annually by reducing occurrences of brown-outs and black-outs

Year 1: Bench-scale embedded sensor and controls development	Start Date: 10/1/2014
Design and build the bench-scale testbed	10/1/2014 to 3/1/2015
Design and characterize sensors and actuators at high temperatures	3/1/2015 to 6/1/2015
System identification and model validation	3/1/2015 to 5/1/2015
Control system design and validation	3/1/2015 to 9/1/2015
Sensor report and control design report generation	9/1/2015 to 10/1/2015
Year 2: Loop-scale embedded I&C testbed design	
Loop-scale testbed engineering analysis, design refinement, and finalization	10/1/2015 to 4/1/2016
Finalize manufacturing and assembly drawings, requirements, and procedures	4/1/2016 to 5/1/2016
Control system power electronics, hardware, algorithm, and software design and fabrication	1/1/2016 to 5/1/2016
Loop-scale testbed manufacturing and assembly	5/1/2016 to 9/1/2016
Loop-scale embedded I&C design report generation	9/1/2016 to 10/1/2016
Year 3: Loop integration and system performance testing	
Integrate testbed with a water loop	10/1/2016 to 2/1/2017
Development and documentation of performance metrics and test procedures	11/1/2016 to 2/1/2017
Performance testing on integrated system	2/1/2017 to 9/1/2017
Final report generation	9/1/2017 to 10/1/217

Crosscutting Benefits (3)

Nuclear Energy

The Light Water Reactor Sustainability (LWRS) will benefit from this R&D through

Retrofit of components having embedded I&C for extended life, high reliability, and efficiency

The Advanced Small Modular Reactor (SMR) Program will benefit from this R&D through

Design of components that are cost effective, low maintenance, and reliable

Advanced Reactor Concepts (ARC) and Next Generation Nuclear Plant (NGNP) programs will benefit from this R&D through

Design of components that operate efficiently and reliably in extreme environments

The Fuel Cycle Technologies (FCT) program could indirectly benefit from this R&D through

Design of components that are low maintenance and long lived in harsh environments

Technology Impact (4)

Nuclear Energy

Technology being used by Chinese reactor designers

- UT-Battelle work on salt reactor development starting in October sponsored by Shanghai Institute of Applied Physics— eventually will use embedded technology
- Prototype helium fan for China's HTR-PM high-temperature gas-cooled reactor completed testing — electromagnetic bearings

NRC is concerned about safety aspects of embedded systems

