

Electrochemical Processing of Used Fuel

J. L. Willit (willit@anl.gov) Argonne National Laboratory

Nuclear Energy

Principles followed in establishing the used LWR & FR fuel treatment processes

- Industrially practicable and economic
- Safeguardable system that meets U.S. non-proliferation objectives
- Maximize actinide recovery to maximize resource utilization and enhance repository performance
- Encapsulate fission product waste in engineered waste forms that can be disposed in an environmentally responsible manner; approach also enhances repository performance
- Minimize secondary waste production

Flowsheet consists of five functional areas

- Head-end operations
- Oxide to metal conversion
- Actinide and fission product separations
- Material recycle
- Waste Management

Example Flowsheet for Treatment of Used Fuel

Nuclear Energy

Types of Process & Facility Monitoring

Nuclear Energy

Process operational parameters

- Process cell atmosphere monitoring and control
- Temperature monitoring and control
- Leak detection
- Position sensing
- Remote handling
- Remote maintenance
- Commercial, off-the-shelf technology

Process equipment parameters

- High current, low voltage power system
- Electrode potentials vs. reference electrode
- Amount of charge passed
- Salt level and density (or masses) in equipment and in transfer operations
- Amount of salt removed/added
- Composition of molten salt (sampled and realtime)
 - Electroanalytical methods CV, SWV, CA, DP, ASV, etc
 - Spectroscopic methods UV-Vis, LIBS, etc
- Gas flow rates

Process streams/products

- Composition of molten salt (sampled and realtime)
 - Electroanalytical methods CV, SWV, CA, DP, ASV, etc
 - Spectroscopic methods UV-Vis, LIBS, etc
- Composition of U and U/TRU product
- Off-gas composition

NDA analysis

- Composition of initial used fuel feed material
- Composition of material transfers to waste processing (i.e. actinide-free)

Electroanalytical Monitoring of Process Salts

Nuclear Energy

- Examined several electroanalytical methods for monitoring U and TRU in process salt
 - Square wave voltammetry, chronoamperometry, differential pulse voltammetry, cyclic voltammetry
- For quantitative measurements, electrode area must be fixed or controlled
 - Successfully used standard addition of electrode area by controlled changes in immersion depth
 - Plot of i_{peak} vs Δh gives line with slope corresponding to concentration
 - Improve statistics with multiple measurements at multiple immersion depths to ~1% RSD
- Most promising technique to date is cyclic voltammetry
 - Gives linear response over typical concentration range
 - Peak current is proportional to concentration
 - Results are in good agreement with chemical analysis
 - Semi-differential treatment improves baseline resolution of reduction peaks

Acknowledgments and Contact Information

Nuclear Energy

Government License Notice

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

This work was supported by the U.S. Department of Energy, Office of Nuclear Energy, under Contract DE-AC02-06CH11357

Contact Information

James Willit Pyroprocess Development Group Leader Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S. Cass Ave. Argonne, IL 60439 Email: <u>willit@anl.gov</u> Phone: 630.252.4384