
PNNL-SA-111785

VOLTTRON Primer

BRANDON CARPENTER
JEREME HAACK

Pacific Northwest National Laboratory

Software Framework for Transactive Energy: VOLTTRON™, VTARI, Arlington, VA

July 29, 2015 1

VOLTTRON Team

July 29, 2015 2

Software Development Team

Bora Akyol

Jereme Haack

Brandon Carpenter

Kyle Monson

Craig Allwardt

Poorva Sharma

Tim Kang

Robert Lutes

Casey Neubauer

Dan Johnson

Application Development Team

Srinivas Katipamula

Robert Lutes

Wooyun Kim

Rick Pratt

Carl Miller

Weimin Wang

Siddartha Goyal

Michael Brambley

Lucy Huang

Chad Corbin

He Hao

Topics Covered

July 29, 2015 3

Basics

Historian

Drivers

VOLTTRON Management Central

2.0 to 3.0 Agent

Installing the Platform

July 29, 2015 4

Clone project from Git: https://github.com/VOLTTRON/volttron.git

Install pre-reqs:

Run: python bootstrap.py

Activate: . env/bin/activate

Build and Install Listener: volttron/scripts/pack_and_install

Agents/ListenerAgent Agents/ListenerAgent listener

Start Agent: volttron-ctl start –tag listener

See it running: volttron-ctl status

https://github.com/VOLTTRON/volttron.git

GitHub

July 29, 2015 5

Code repository

Wiki

Issue tracking

Bugs

Enhancements

Used for development planning

VOLTTRON Overview

July 29, 2015 6

Deployment Components

July 29, 2015 7

Working with the Historian

July 29, 2015 8

base_historian.py

handles getting device and agent

data from the message bus

Writes data to local cache until

successful write

Specific implementations should

extend this class and only need

to implement specifics functions

historian_setup

publish_to_historian: store data

in db, external service, file, etc.

query_historian

VOLTTRON Central:

Managing the Platform

July 29, 2015 9

VOLTTRON Central Manager

Agent presenting web interface

Platform registry for deployment

Provides graphs of points on

other platforms

Platform Agent

Point of contact for addressing

platform

Provides access to other agents

on platform

PlatformHistorian

Records data from Message Bus

Exposes query interface for

Central Manager Agent

Base Agent Definition

July 29, 2015 10

Agent Core

July 29, 2015 11

Main event loop handler and VIP message dispatcher

Namespace: Agent.core

Methods:

register(name, handler, error_handler)

Register a subsystem handler

run(running_event=None)

Connects VIP socket and starts processing of VIP messages

 stop(timeout=None)

Stop the agent (can be called from any context)

send(func, *args, **kwargs) and send_async(func, *args, **kwargs)

Send functions from any thread to execute

spawn(func, *args, **kwargs) and spawn_in_thread(func, *args, **kwargs)

Spawn function in new greenlet or thread

Agent Core (continued)

July 29, 2015 12

Decorators:

periodic(period, args=None, kwargs=None, wait=0)

Execute a method on a regular interval

schedule(deadline, *args, **kwargs)

Execute a method at a specific time

receiver(signal)

Register a method as a callback for the named signal

Signals:

onsetup – used for instantiation and configuration

VIP messaging is not running

All receivers run serially

onstart – used to spawn tasks as VIP loop starts

onstop – signaled just before VIP loop stops

onfinish – signaled after VIP loop stops

Used for teardown and cleanup

PubSub Subsystem

July 29, 2015 13

Namespace: Agent.vip.pubsub

Methods:

add_bus(name) / remove_bus(name)

Add or remove a pub/sub bus

subscribe(peer, prefix, callback, bus='')

Subscribe to bus on peer for topics starting with prefix.

callback(peer, sender, bus, topic, headers, message)

unsubscribe(peer, prefix, callback, bus='')

Unsubscribe from bus on peer

Wildcard one or both of prefix or callback by passing None

publish(peer, topic, headers=None, message=None, bus='')

Publish headers and message to topic on bus on peer

peer may be None to publish to self

Decorators:

PubSub.subscribe(peer, prefix, bus='‘)

Register method ass callback for subscription

RPC Subsystem

July 29, 2015 14

Namespace: Agent.vip.rpc

Methods:

call(peer, method, *args, **kwargs)

Call remote method exported by peer

Returns AsyncResult object

notify(peer, method, *args, **kwargs)

Send notification to peer via exported method

Decorators:

export(name=None)

Make method remotely callable

Porting Listener Agent from 2.x to 3.0

July 29, 2015 15

Porting Listener Agent (Continued)

July 29, 2015 16

Update imports to use VIP modules

-from volttron.platform.agent import BaseAgent, PublishMixin, periodic

-from volttron.platform.agent import utils, matching

+from volttron.platform.vip.agent import Agent, Core, PubSub

+from volttron.platform.agent import utils

Porting Listener Agent (Continued)

July 29, 2015 17

Modify class definition to use VIP base agent

-class ListenerAgent(PublishMixin, BaseAgent):

+class ListenerAgent(Agent):

Porting Listener Agent (Continued)

July 29, 2015 18

Use core signals instead of overriding event methods

- def setup(self):

+ @Core.receiver('onsetup')

+ def setup(self, sender, **kwargs):

- # Always call the base class setup()

- super(ListenerAgent, self).setup()

Porting Listener Agent (Continued)

July 29, 2015 19

Use PubSub subscribe decorator to subscribe to topics

- @matching.match_all

- def on_match(self, topic, headers, message, match):

+ @PubSub.subscribe('pubsub', '')

+ def on_match(self, peer, sender, bus, topic, headers, message):

Porting Listener Agent (Continued)

July 29, 2015 20

Periodic decorator is now namespaced

- @periodic(settings.HEARTBEAT_PERIOD)

+ @Core.periodic(settings.HEARTBEAT_PERIOD)

Porting Listener Agent (Continued)

July 29, 2015 21

VIP subsystem methods are now namespaced in agent class

- self.publish('heartbeat/listeneragent', headers, now)

+ self.vip.pubsub.publish(

+ 'pubsub', 'heartbeat/listeneragent', headers, now)

Porting Listener Agent (Continued)

July 29, 2015 22

gevent for Cooperative Multitasking

July 29, 2015 23

gevent is a coroutine-based Python networking library that uses greenlet to

provide a high-level synchronous API on top of the libev event loop.

Features include:

• Fast event loop based on libev (epoll on Linux, kqueue on FreeBSD).

• Lightweight execution units based on greenlet.

• API that re-uses concepts from the Python standard library (for example

there are Events and Queues).

• Cooperative sockets with SSL support

• DNS queries performed through threadpool or c-ares.

• Monkey patching utility to get 3rd party modules to become cooperative

According to gevent.org:

Tips for using gevent

July 29, 2015 24

gevent is cooperative

Greenlet’s own the thread until explicitly relinquished or blocking operation

Must use gevent-aware routines when blocking

Locking is not necessary

Use gevent.sleep(0) to yield thread

Use caution when using gevent across threads

Agent core has methods to assist

send(), send_async(), and spawn_in_thread()

This use case is rare

Can monkey-patch threading module

When reading files use gevent.fileobject.FileObject proxy

Use zmq.green in place of zmq

from zmq import green as zmq

Provides socket, ssl, select, etc. modules

VOLTTRON Resources

July 29, 2015 25

GitHub

https://github.com/VOLTTRON/volttron.git

https://github.com/VOLTTRON/volttron/wiki

Email: volttron@pnnl.gov

Bi-weekly office hours, email to be added

https://github.com/VOLTTRON/volttron/wiki
https://github.com/VOLTTRON/volttron/wiki
https://github.com/VOLTTRON/volttron/wiki
https://github.com/VOLTTRON/volttron/wiki
mailto:volttron@pnnl.gov

