

QualityLogic.

Putting Technology to the Test

VOLTTRONTM Transactive Control Node: Case Study

Linda Rankin (linda.j.rankin@gmail.com)

Node Contributors:

Chris Freeman (chris.freeman.pdx@gmail.com)

Glen Cooper (gcooper@qualitylogic.com)

VOLLTRON Technical Meeting, July 2015

Pacific North SMART C

Transactive Control (TC)

- A unique distributed control and communication system demonstrated by the Pacific Northwest Smart Grid Demonstration Project (PNW-SGDP)
 - www.pnwsmartgrid.org
- Localized power generation/load decisions enabled by
 - Distribution of predicted cost and load schedules
 - Incorporating local information and requirements
- Addresses the following areas:
 - Integrating renewable energy
 - Improving reliability
 - Cost reduction
 - Empowering consumers

Pacific Northwest SMART GRID DEMONSTRATION PROJECT

Transactive Control Signals

- Communication signals for predicted cost and load
- TIS (Incentive), TFS (feedback)
- Transactive Control Node
 - Uses neighbor signals and local information to generate predicted costs and load
 - Manages local assets (resources and loads)
 - Flexible and efficient design allowing deployment at all levels of the energy hierarchy
 - IBM developed a proprietary node based on IEC 18012 (iCS)

PNW-SGDP: Node Behavior

TIS/TFS (incentive and feedback signal) calculation and interaction with node neighbors defined by the demonstration project

Computation flow diagram from Transactive Node Toolkit Framework, v 1.0

Figure 1. Toolkit Framework of Functions and Processes at a Transactive node

PNW-SGDP: Software Objects

Pacific Northwest
SMART GRID
DEMONSTRATION PROJECT

- TC Node objects, configuration and intranode interactions defined and documented using UMI
- Implementation agnostic

Node object diagram from Transactive Control Node: Interactions, Interfaces & Class Structures, v0.90

Reference TC Node Design

- A reference node based on the specifications:
 - PNW-SGDP <u>Transactive Node Toolkit Framework</u>, v1.0
 - PNW-SGDP Transactive Control Node: Interactions, Interfaces and Class Structures v 0.90
- Node Goals and Guidelines
 - Based on open source, available to research community
 - Configurable (TC-related structures, update frequency)
 - Allow for integration of different communication protocols for signals and assets
 - Add asset control and feedback interface
 - Provide a real-time visualization capability
 - Incorporate other learnings from project where feasible
 - Able to pass signaling conformance tests developed for the project

VOLTTRON Provided Complementary Platform and Asset Services for TC

PNW-SGDP TC Node Definition

Event Signaling (support for power grid events)

Decision Logic (creating local schedules, asset cost/load models)

Services (platform mgmt, weather services, logging and data collection)

Device Interface (Local asset control and bus interfaces)

TC Node: An implementation of Transactive Energy that uses exchange of incentive/feedback schedules, along with local information to make decisions about controlling local assets.

VOLTTRON: Integration platform for devices (RTUs, HVACs), with external resources, services and applications. Usage model is typically receiving events from power grid, controlling devices thru standard interfaces (BACNET, MODBUS). Linux/Python implementation.

VOLTTRON

VOLTTRON TC Node

Toolkit Framework Agent is the sequential point of control for Transactive Control functions.

All other agents are event-based, asynchronous

Gray boxes represent existing VOLTTRON services.

Pacific Northwest

Constrained Feeder 4-Node Demo

Pacific Northwest SMART GRID DEMONSTRATION PROJECT

Feeder/Home Communications: TIS/TFS using Omq <u>Constrained Feeder Node</u>

Resource Toolkit Functions:
Transactive Energy, Feeder Limit
Load Toolkit Functions:
Transactive Energy

Home Nodes

Resource Toolkit Functions:
 Transactive Energy
 Load Toolkit Functions:
 Transactive Energy, Home
 Base Load,
 EV Charger Asset Model
 Asset Connector:
 EV Charger

House 1: I'm flexible

House 2: I want it now!

House 3: I'm a bargain hunter

Demonstrates how price and predicted load are negotiated between home and feeder nodes.

Pacific Northwest SMART GRID DEMONSTRATION PROJECT

Screen Shot of Demo: 4 TC Nodes

Feeder/Home Nodes TIS/TFS and charging profiles after negotiation

Observations: TC Node Modular Design

Pacific Northwest
SMART GRID
DEMONSTRATION PROJECT

- Message definition choices
 - Used "topic/op/type/qualifier" constructs
 - Ops were send/receive, update/publish, request/publish
- Application distributed across agents
 - Designed and implemented configuration discovery
 - Common functions and message definitions in global location
 - Ability to create node types using agent configuration options

Cons

- Common functions, signal definitions and scripts placed within platform code
- Extensive logging used for debug impacted thruput (needed better controls)

• Pros

- Modular architecture allowed parallel development (4 months to develop!)
- VOLTTRON agent-based architecture allows mix-n-match of comms interfaces, asset connectors, toolkit functions, etc.
- Clear APIs defined for developers

VOLTTRON Observations

- Terrific platform for fast development
 - Python/Linux are effective and efficient
 - VOLTTRON messaging and services allowed focus on application
 - Mix/Match of agents and configurations allowed for complex node design.
 Installation, configuration, packaging straightforward.
 - Open source examples accelerated development
 - Git, GitHub as revision control environment supports collaborative, parallel development
- High value in adding VOLTTRON functions
 - 3.0 Peer-to-Peer comms would be used for TIS/TFS exchange
 - 3.0 System Management would be used for deploying nodes on small form factors
 - Remote Debug?
 - Security: adding/removing agents in trusted manner for commercial applications

Growing the User Community

- Develop interoperability guidelines
 - Message construction guidelines
 - Requirements for packaging and installation scripts
 - Version compatibility and use of external libraries
 - API guidelines for built-in services
- Self-certification tool
 - Users can use to verify that code and changes meet interoperability guidelines
 - Can be used to manage VOLTTRON code updates

Thank You

For further questions and comments contact me at:

linda.j.rankin@gmail.com