State Energy Advisory Board 22 February 2011

Challenges in Alternative Energy Production

David Fridley
Environmental Energy Technology Division
Lawrence Berkeley National Laboratory

The feasibility of alternatives is not just a matter of price: other considerations also impact viability

- Energy Return on Investment
- Scalability and Timing
- 3. Substitutability
- 4. Commercialization
- Input Requirements
- 6. Intermittency
- 7. Land and Water
- 8. Stock vs. Flow
- The Law of Receding Horizons

1. Energy Return on Investment

- It takes energy to make energy; what society requires is the "net" energy left over.
- Energy Return on Investment is a ratio of the energy available to be used by society compared to the energy used to produce that energy, i.e. the "profit" from energy production

Energy Return on Investment (EROI) =
$$\frac{\mathsf{E}_{\text{out}}}{\mathsf{E}_{\text{in}}}$$

Most alternative energies have low EROIs compared to oil

The lower the EROI, the more energy society must devote to producing energy, and the less left for society

2. Scalability and Timing

 For the promise of an alternative to be achieved, it must be supplied in the time frame needed, in the volume needed, at a reasonable cost

The current rate of global oil depletion is about 3.5-4 million b/d per year. By 2020, we would need 42-48 million b/d of new production, or 5 Saudi Arabias, just to stay flat

Canadian tar sands now produce about 1 million b/d. By 2020, production is forecast to rise to 3.5 million b/d, or an additional 2.5 million b/d over 10 years

Tar sands provide neither the scale nor timing to offset oil depletion

The problem of scale

3. Substitutability

Is an alternative a direct substitute, or does it require infrastructure changes to use it?

Electrification of transportation, such as with electric vehicles

- Retooling of factories to produce the vehicles
- Development of a large scale battery industry
- Development of recharging facilities
- •"Smart grid" solutions and deployment
- Design and production of instruments for the maintenance and repair of vehicles
- Spare parts industry
- More generation and transmission facilities

Ethanol

- Cannot be transported in existing pipeline infrastructure
- Requires more energy-intensive truck and train transport

4. Commercialization

Is the alternative commercial today?

The average time between laboratory benchtop demonstration and full-scale commercialization is 20 years

Mitigation efforts require long lead-times

5. Input Requirements

The inputs to alternative energy development are material resources, not money. Are there supply constraints on inputs?

Global Demand on Raw Materials from Emerging Technologies

Raw Material	Fraction of Today's Total World Production		Emerging Technologies (selected)
	2006	2030	
Gallium	0.28	6.09	Thin-layer photovoltaics, integrated circuits, white LEDs
Neodymium	0.55	3.82	Permanent magnets, laser technology
Indium	0.40	3.29	Displays, thin-layer photovoltaics
Germanium	0.31	2.44	Fiber-optic cable, infrared optical technologies
Scandium	Low	2.28	Solid oxide fuel cells, aluminum alloying element
Platinum	Low	1.56	Fuel cells, catalysts
Tantalum	0.39	1.01	Microcapacitors, medical technology
Silver	0.26	0.78	Radio-frequency ID tags, lead-free soft solder
Tin	0.62	0.77	Lead-free soft solder, transparent electrodes
Cobalt	0.19	0.40	Lithium-ion batteries, synthetic fuels
Palladium	0.10	0.34	Catalysts, seawater desalination
Titanium	0.08	0.29	Seawater desalination, implants
Copper	0.09	0.24	Efficient electric motors, radio-frequency ID tags
Selenium	Low	0.11	Thin-layer photovoltaics, alloying element
Niobium	0.01	0.03	Microcapacitors, ferroallys
Ruthenium	0.00	0.03	Dye-sensitized solar cells, Ti-alloying element
Yttrium	Low	0.01	Superconduction, laser technology
Antimony	Low	Low	Antimony-tin-oxides, microcapacitors
Chromium	Low	Low	Seawater desalination, marine technologies

A key input to thin-film solar is indium. Known world reserves would last 13 years at current consumption rates

6. Intermittency

 Our energy system operates 24/7/365 and our system has been built on this expectation. Large scale deployment of renewables requires storage solutions

Wind turbines generate electricity on average 25-30% of a year Solar PV produces peak generation about 4.5 hours per day, or about 15% of nominal capacity

Energy density is a major challenge to energy storage

 Lower energy density results in higher consumption of material resources for any given amount of energy storage

7. Land and Water

The denser an energy form is, the less land is needed for its deployment. Large-scale deployment of alternatives will incur considerable land costs

Planting of 2.7 million acres of California's irrigated pastureland would produce switchgrass enough to supplant only 1.5-4% of California's gasoline consumption with cellulosic ethanol

Full-cycle water requirements for biofuel production

8. Stock vs. Flow

Most alternatives rely on an energy flux to replace a stock of stored energy; utilization is constrained by the flux

9. "The Law of Receding Horizons"

 The breakeven costs of energy-inputintensive alternative energies will dynamically rise with the overall cost of energy

Price of Crude Oil	Breakeven Price for Shale			
1970: \$1.50/barrel	\$2/barrel			
1980: \$30/barrel	\$40/barrel			
2007: \$70/barrel	\$90/barrel			
When will Colorado "Shale Oil" become economic?				

Can alternatives deliver on their promises?

- Alternatives are required: energy supply uncertainties and climate change are key drivers
- Alternatives today rely extensively on fossil fuel energy
- The transition from reliance on extraction of stored energy to current energy income will be challenging
- Technology alone is likely insufficient to power the transition; demand, behavior, and lifestyle changes will also be necessary