DOE/OE Transmission Reliability Program

Continuous Data-Driven Model Development

PI: Mark A. Buckner, PhD

Oak Ridge National Laboratory bucknerma@ornl.gov June 3-4, 2015 Washington, DC

Team: Philip Irminger, Ben Ollis, Bailu Xiao, Mitchell Smith,

Michel Starke, Joe Gracia P.E.,

Brian MacCleery (NI), Jim Nagle (NI)

Project Motivation

"integrating large number of DERs with different dynamics into distribution level makes it practically impossible to find dynamic equivalents for distribution interconnections using traditional methods" [1]

> "There is an imminent need for modeling distributed generation (e.g. solar, micro-turbines, fuelcells etc.)."[2] ... *and loads*.

Need for high fidelity dynamic models of DERs, microgrids, loads, and inter-connected system.

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTIONS

[1] A. Ishchenko, J. Myrzik, and W. Kling, "Dynamic equivalencing of distribution networks with dispersed generation using hankel norm approximation," *Generation, Transmission & Distribution, IET*, vol. 1, no. 5, pp. 818–825, 2007.
 [2] Allen, Eric, D. N. Kosterev, and Pouyan Pourbeik. "Validation of power system models." *Power and Energy Society General Meeting, 2010 IEEE*. IEEE, 2010.

Motivation: Grid Modernization

Cross-cuts: Smart Grid, Buildings, Vehicles, Transformative Manufacturing, IoT

Critical needs

- Sensing/Measurements
- Control
- Multi-level coordination
- Optimization
- Modeling/Simulation
- Cybersecurity
- Architecture
- Communications
- Two-way power flow

Review Draft April 14, 2001

Grid Modernization Multi-Year Program Plan

Today's Grid	Smart Grid		
Consumers are uninformed and non-participative with power system	Informed, involved, and active consumers; demand response and distributed energy resources		
Dominated by central generation; many abstacles exist for distributed energy resources interconnection	Many distributed energy resources with plug-and-play convenience; focus on renewables		
Limited wholesale markets, not well integrated; limited opportunities for consumers	Mature, well-integrated wholesale markets, growth of new electricity markets for consumers		
Focus on outages; slow response to power quality issues	Power quality is a priority with a variety of quality/price options; rapid resolution of issues		
Little integration of operational data with asset management; business-process silos	Greatly expanded data acquisition of grid parameters; focus on prevention, minimizing impact to consumers		
Responds to prevent further damage; focus is on protecting assets following fault	Automatically detects and responds to problems: focus on prevention minimizing impact to consumer		
Vulnerable to malicious acts of terror and	Resilient to attack and natural disasters		

Vision: a grid modernization research platform

"Holy Grail of Simulation Technology"

Project Objective and FY15 Tasks

Project tasks:

- Develop machine models;
 - Synchronous generators
 - Induction machines
 - Inverter-based motor controls
 - Inverters for PV
 - Inverters for wind turbines

Objective: Develop a learning system to generate models that adequately represent the dynamic behavior of generators, loads, and storage devices connected to the electric grid (for use in real-time power system simulations).

- Inverters for energy storage (Lithium-ion, Lead Acid)
- Characterize steady state and dynamic parameters for selected equipment (through measurements)
- Perform real-time machine simulations
- Develop a system to learn "model" parameters from empirical data
- Compare results from rotating and electronically-coupled machines to the actual behavior of those machines
- Outreach to socialize concept, solicit guidance on prioritization, recruit a
 host/partner for field deployment and evaluation

Major Accomplishments

- Developed a 3-phase low-voltage microgrid
 - Mix of DER assets *leveraged*
 - Using it to develop and validate this approach for both device and systems level models
- Developed real-time device models of DER assets
- Developed the on-line learning framework for inverter based machines (DE/CGLS)
- Developed an online survey (Survey Monkey) to identify utility needs (deficiencies in the current systems) and timing of modeling work

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTIONS

SI-GRID: Software-defined Intelligent Grid Research Integration and Development platform

Motor Drive Setup

FPGA Front Panel During Run-Time - Physical IO and HIL Model Running in GPIC FPGA

PV Inverter (MPPT)

Energy Storage Setup

Physical and FPGA-simulated waveforms – use DE optimizer on (Vce, Ron, L, R_LESR, RloadFwd, RloadRev)

FRT

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTIONS

 $\boldsymbol{\varsigma}$

Online Learning System Screen Shots

Online Learning System Results

Hand tuned parameters before global optimization

Validation of parameter ID

Physical and FPGA-simulated waveforms after global optimization of (Vce, Ron, L, R_LESR, R_BATCharge, R_BATDischarge)

Test	Description	mean(X1 error)	mean(X1 error *evaluations)
1	No local optimization	0.568	238.5408
2	Optimize only the best	0.5631	483.66
3	Sequentially Optimize the N Best (N=5)	0.3358	248.2386
4	Optimize one random population member	0.5612	475.4459
5	Locally optimize every population member	0.007	52.7633
6	Sequentially Optimize the N Best (N=10)	0.2383	176.3019
7	Sequentially Optimize the N Best (N=15)	0.1935	143.4965
8	Sequentially Optimize the N Best (N=20)	0.1995	147.9021
9	Locally optimize best 5 population members	0.2908	649.2309
10	Locally optimize worst 5 population members	0.568	471.6775
11	Locally optimize random 5 population member	0.5351	1386.9866

Milestones

- Report documenting survey questions on utility needs (deficiencies in the current system) (March 2015)
- Technical paper documenting the data-driven learning framework (D2LF) for synchronous generator, induction machine, and inverter on SI-GRID (May 2015)
- Report documenting the engagement of selected utilities (June 2015)
- Report documenting participation in NI Week's power and energy track (Sept 2015)
- Technical report describing the approach and results of the learning system algorithms on SI-GRID (Sept 2015)
- Report documenting a plan to obtain utility vetting of newly developed model derivation and validation processes (Sept 2015)

Looking Forward (FY15)

- Solicit utility participants for SurveyMonkey
- Report on SurveyMonkey results
- Complete technical paper documenting the D2LF
- Present a paper at NI Week on the D2LF
- Complete D2LF & validate models and approach against operating SI-GRID (Document in a report)
- Identify a willing utility and develop a plan to vet the D2LF

Risk Factors

- Learning engine for the D2LF doesn't work
- Co-simulation models are too complex to run in real-time in the current FPGAs
- Dynamics of the inverter based DERs on SI-GRID are too complex and fast to develop accurate models
- Measurements are too noisy/inaccurate to develop accurate models on SI-GRID
- Relevance of approach for transmission systems

Future work FY16

- Create versions of the D2LF to
 - Develop models of existing devices while they are operating
 - Portable system with appropriate I/O
 - Explore interfacing with existing modeling tools/simulators (e.g., EMTP-RV, ATP, ... RTDS, OpalRT, ...)
- Vet approach with utility partner(s)
- Transition D2LF to industry
 - Integrate into NI's LabVIEW Electrical Power Suite
 - Publish as open framework with SI-GRID as a reference implementation
- Integrate D2LF and Grid-SEER to create a data-driven plug-and-sim modeling and simulation framework

