### **DOE/OE Transmission Reliability Program**

# Eastern Interconnection Phase Angle Base Lining Study

**Bharat Bhargava** 



bhargava@electricpowergroup.com June 10-11, 2015 Washington, DC





# **Topics**

- Project Objective
- Study / Analysis Steps
- Major Technical Accomplishments
- Deliverables and schedule for activities to be completed under FY15 funding
- Risk factors affecting timely completion of planned activities as well as movement through RD&D cycle
- Early thoughts on follow-on work that should be considered for funding in FY16





# **Project Objective**

- Conduct wide area angle pair analysis using Phasor Measurement System data from four ISOs
  - December 15, 2013 to February 14, 2015
  - September 1, 2014 to October 31, 2015
- Identify Phase Angle Pairs Based on Data and Inputs from ISOs
  - Selected 22 inter-ISO angle pairs
- Investigate correlation between LMP and high stress system conditions
- Evaluate changes in angle differences to identify significant system events (December 1, 2014 to December 7, 2014)





# Study / Analysis Steps

#### Data Collection

- Define Time period for data extraction / collection from ISOs
- Obtain data from ISOs for 12/15/2013 to 2/15/2014, 9/01/2014 to 10/31/2014 and 12/01/2014 to 12/07/2014

### Data Checking - evaluate data quality and other attributes

- Data Availability and data quality
- Time synchronization and offset correction
- Time stamp alignment
- Data formats

### Data Aggregation and synchronizing checks for Wide Area Analysis

- Combine data from different ISOs
  - Data conversion to a common format and Time alignment
- Data extraction for selected/alternate angle pairs

### Perform Statistical Analysis

- Box Whisker and Time Duration Analysis
- Correlation with Power Flow and Bus Voltage
- Establish Typical Ranges for Selected Angle Pairs
- Significant event analysis





# **Major Technical Accomplishments**

- Analysis completed for twenty two wide area angle pairs using 2013-2014 phasor system data
- Angle pair selection based on the input from ISOs/TAG
  - Selected twenty two Angle pairs
  - Data required from fifteen substations to analyze the above 22 angle pairs
- Problems in analyzing wide area angle pairs using PMU data
  - Poor data quality data quality needs improvement
  - Data synchronization
  - Offset errors required adjustments to some PMU data
- Draft Report for winter (December 15, 2013-February 15, 2014-and fall (September 1,2014 to October 31, 2014) completed and submitted
  - Analysis of twenty-two wide Internal angle pairs
  - Wide Area Angle pair analysis and its correlation with LMP
- Phasor System data can provide good results and information for Wide area angle pairs across ISOs. Using phasor system data, ISOs can monitor
  - System stress conditions
  - Pre-cursors and high stress locations and event identification
  - Data checking and analysis







| Index | From bus       | To bus         | Reason                                  |
|-------|----------------|----------------|-----------------------------------------|
| 1     | Raun           | Sub 91         | IA Wind Transfers                       |
| 2     | Goodings       | Arcadian       | Wi-Chi Transfers                        |
| 3     | Goodings       | Palisades      | Chi-MI Transfers                        |
| 4     | Labadie        | Hanna          | West to East Transfers                  |
| 5     | Labadie        | Cumberland     | St Louis South Transfers                |
| 6     | Jacksons Ferry | Cumberland     | TVA to PJM (Southwest) Transfers        |
| 7     | Canton Centr.  | Monroe         | SE MI Transfers                         |
| 8     | Alburtis       | Canton Centr.  | West to East Transfers (Lake Erie Loop) |
| 9     | Alburtis       | Jacksons Ferry | Southwest to East Transfers             |
| 10    | Alburtis       | Ramapo         | PJM to NYISO                            |
| 11    | Niagara        | Monroe         | NYISO to MISO                           |
| 12    | Niagara        | Ramapo         | West to Southeast Transfers             |

| Index | From bus  | To bus        | Reason         |       |
|-------|-----------|---------------|----------------|-------|
| 13    | Ramapo    | Millbury      | NYISO to ISONE |       |
| 14    | Raun      | Ramapo        | MISO to NYISO  |       |
| 15    | Arcadian  | Ramapo        | MISO to NYISO  |       |
| 16    | Goodings  | Monroe        | Close the loop |       |
| 17    | Goodings  | Hanna         | Close the loop |       |
| 18    | Hanna     | Monroe        | Close the loop |       |
| 19    | Hanna     | Canton Centr. | Close the loop |       |
| 20    | Palisades | Monroe        | Close the loop |       |
| 21    | Raun      | Millbury      | MISO to ISONE  |       |
| 22    | Arcadian  | Millbury      | MISO to ISONE  | SOLUT |

# Results of Comparison for Different Time Periods - High<sup>1</sup> and Low<sup>1</sup> Values

| Index | From bus                                   | To bus                                     | SE Data<br><mark>March 2011</mark> |      | PMU Data<br>(1)<br>12/15/2013-<br>2/15/2014 |      | PMU Data (2)<br>9/1/2014-<br>10/31/2014 |      | PMU Data (3)<br>12/1/2014-<br>12/7/2014 |      |
|-------|--------------------------------------------|--------------------------------------------|------------------------------------|------|---------------------------------------------|------|-----------------------------------------|------|-----------------------------------------|------|
|       |                                            |                                            | Low                                | High | Low                                         | High | Low                                     | High | Low                                     | High |
| 1     | Raun 345kV ( <i>Lehigh*</i> )              | Sub 91 345kV                               | -13                                | 48   | -30                                         | 30   | -9                                      | 28   | -10                                     | 25   |
| 2     | Goodings 345kV                             | Arcadian 345kV                             | -8                                 | 14   | -14                                         | 18   | -12                                     | 15   | -8                                      | 10   |
| 3     | Goodings 345kV                             | Palisades 345kV                            | 7                                  | 29   | -6                                          | 28   | -5                                      | 23   | 3                                       | 25   |
| 4     | Labadie 345kV ( <i>Montgomery</i> ^)       | Hanna 345kV                                | 23                                 | 57   | 12                                          | 63   | 0                                       | 48   | 22                                      | 56   |
| 5     | Labadie 345kV ( <i>Montgomery</i> ^)       | Cumberland 500kV (Ammojopa^)               | 9                                  | 35   | -11                                         | 47   | -4                                      | 22   | -4                                      | 20   |
| 6     | Jacksons Ferry 765kV ( <i>Broadford</i> ^) | Cumberland 500kV (Ammojopa^)               | -47                                | -19  | -54                                         | -4   | -47                                     | -4   | -52                                     | -26  |
| 7     | Canton Centr. 345kV                        | Monroe 345kV ( <i>Decoplacid</i> ^)        | -10                                | 12   | -34                                         | 17   | -9                                      | 27   | 3                                       | 29   |
| 8     | Alburtis 500kV                             | Canton Centr. 345kV                        | -46                                | -10  | -61                                         | 8    | -52                                     | 20   | -23                                     | 5    |
| 9     | Alburtis 500kV                             | Jacksons Ferry 765kV ( <i>Broadford</i> ^) | -60                                | -12  | -76                                         | 11   | -63                                     | 29   | -33                                     | 11   |
| 10    | Alburtis 500kV                             | Ramapo 500kV (Buchanan*)                   | 2                                  | 18   | -3                                          | 49   | -2                                      | 26   | -1                                      | 35   |
| 11    | Niagara 345kV                              | Monroe 345kV ( <i>Decoplacid</i> ^)        | -26                                | 12   | -49                                         | 50   | -7                                      | 62   | 1                                       | 51   |
| 12    | Niagara 345kV                              | Ramapo 500kV ( <i>Buchanan</i> *)          | 9                                  | 57   | 22                                          | 88   | 15                                      | 69   | 22                                      | 55   |
| 13    | Ramapo 500kV (Buchanan*)                   | Millbury 345kV                             | -26                                | 17   | -36                                         | 24   | -25                                     | 11   | -10                                     | 19   |
| 14    | Raun 345kV ( <i>Lehigh*</i> )              | Ramapo 500kV (Buchanan*)                   | 66                                 | 154  | 19                                          | 208  | 7                                       | 142  | 33                                      | 128  |
| 15    | Arcadian 345kV                             | Ramapo 500kV (Buchanan*)                   | 39                                 | 109  | 19                                          | 159  | 43                                      | 168  | 15                                      | 88   |
| 16    | Goodings 345kV                             | Monroe 345kV ( <i>Decoplacid</i> ^)        | 22                                 | 54   | -6                                          | 51   | -1                                      | 46   | 20                                      | 55   |
| 17    | Goodings 345kV                             | Hanna 345kV                                | 0                                  | 23   | -21                                         | 27   | -16                                     | 22   | -3                                      | 29   |
| 18    | Hanna 345kV                                | Monroe 345kV ( <i>Decoplacid</i> ^)        | 11                                 | 46   | -18                                         | 46   | -1                                      | 40   | 10                                      | 45   |
| 19    | Hanna 345kV                                | Canton Centr. 345kV                        | 13                                 | 42   | -5                                          | 48   | -11                                     | 30   | -1                                      | 30   |
| 20    | Palisades 345kV                            | Monroe 345kV ( <i>Decoplacid</i> ^)        | 8                                  | 29   | -3                                          | 27   | 0                                       | 27   | 14                                      | 36   |
| 21    | Raun 345kV ( <i>Lehigh*</i> )              | Millbury 345kV                             | 26                                 | 117  | 8                                           | 213  | 0                                       | 128  | 34                                      | 148  |
| 22    | Arcadian 345kV                             | Millbury 345kV                             | 51                                 | 159  | 2                                           | 165  | 27                                      | 154  | 11                                      | 101  |

<sup>&</sup>lt;sup>1</sup> High and Low values are determined after eliminating top and bottom 0.5% of data to account for outliers \*^ Alternative data sources used due to poor data availability for some primary signals

# Methodology to Identify Significant Events

- Control Chart analysis technique used to identify significant events
  - Method is commonly used in manufacturing to find samples outside the tolerance band
  - Three step method find max and min values in one minute time window; calculate range; compare with range control value
  - Used angle pair angle difference values for selected angle pairs
  - Typical tolerance band for normal distributions is +/- 3 sigma
     (99.76 percent). For extreme events used high sigma values
  - Use of 20 sigma identified 2 extreme events; use of 15 sigma
     identified 3 major events same as actual number of events
- Methodology can be used to extract significant events



CERTS
CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTION

# Dec 1 to Dec 7, 2014 – 3 Major Events



# Detected Events Summary (nSigma=20) Dec 1 to Dec 7, 2014: 14 events identified



### **Deliverables and Schedules**

- Analysis of ISO-internal angle pairs using SE data Completed
- Report summarizing analysis process and analysis results using Phasor system data - Completed
- Periodic TAG meetings to report and discuss results (Three inperson meetings during FY15)
- Analysis of wide area angle pairs for event detection and as pre-cursors of significant events using one week (December 1-7, 2014) data – in progress
  - Data received and analyzed
  - Report presented and discussed with ISOs/TAG members
- Complete Report of Analysis June 30, 2015





## **Risk Factors Affecting Timely Completion**

- Data quality and data availability
  - Data quality needs improvement for some selected locations
  - Data availability for selected angle pairs from ISOs
- Data Synchronization
  - PMU data is well synchronized unlike State Estimator system data
  - Some phase angle adjustments are required –offset errors
- Additional Data
  - Power flow data and some voltage measurements will help in identification and analysis of pre-cursors





# **Summary and Next Steps**

### **Summary:**

- Received and collected Dec 1-7, 2014 phasor data from four ISOs;
- Extracted Dec 1-7, 2014 phasor data, cleaned and combined data for four ISOs;
- Angle change range can be used to identify system event;
- Angle difference value is related to system stress level;
- Angle pairs close to the event location can detect the event. Angle pairs that are far away from the event location can't detect the event.

#### **Next Steps:**

- Prepare technical report
- Conduct Research to Identify event precursors that could lead to early warning and a new approach to alarming and system monitoring to allow operators time to react
  - Currently, alarms are based on thresholds.
  - Investigate whether for dynamic metrics
    - Phase angles
    - Oscillations
    - Sensitivities



\_CERIS





### Thank You.

## Any questions?





bhargava@electricpowergroup.com



