

Borehole Detonation

EGS Validation

Team: Pengcheng Fu, Bin Guo, Oleg Vorobiev and Brad White

Validation of EGS Feasibility and Explosive Fracturing Techniques

Project Officer: Elisabet Metcalf

Total Project Funding: \$450K for 2 years

May 11, 2015

Principal Investigator
Charles R. Carrigan
Lawrence Livermore National Lab

Track 4-EGS2-Innovative Stimulation Techniques

EGS Validation Objective:

Determine feasibility of long-term energy production

EGS

Challenges, barriers, knowledge gaps

- Important parameters determining long-term production are unknown
- Exploration is expensive Must focus on explorating only most important parameters
- Understanding subtle but high-impact effects on extracting thermal energy is critical to ensuring long-term, high-quality output

Impacts (Costs, Performance, etc.)

- Results contribute to determining EGS parameters that maximize long-term output
- Ranking most to least important EGS parameters affecting performance reduces exploration costs – We then know most important things to look for!
- Estimating uncertainty on long-term performance affects upfront spending plans

EGS Validation Objective:

Determine feasibility of long-term energy production

EGS

Innovative Highlights

- Achieved full thermo-hydro-mechanical (THM) coupling allowing evaluation of critical flow channeling effects
- Discrete fracture network coupled to porous flow modeling allows high fidelity evaluation
- GTO project leverages heavily on internal development of LLNL GEOS code (> \$3M)
 for substantial cost reduction

Impact on GTO's EGS goals

- Support EGS design with goal of reducing cost and enhancing probability of achieving 5 MW reservoir by 2020
- Maximizing long-term output through exploration and design supported by simulations reduces both exploration costs and LCOE

Scientific/Technical Approach

EGS Validation:

Use new GEOS multi-physics, discrete fracture code

- Simulate themo-hydro-mechanical processes in pre-stressed thermal regime with pre-existing fractures
- Validated against lab experiments, analytical results and other codes (e.g., GTO Code Comparison)
- Thermo-mechanical (TM) models show flow resistance fall-off w/ time as thermal output declines as observed in field

Project design highlights

- Evaluates dependence of EGS output on different parameters including multiple-fracture distribution statistics, joint angles, well orientation, single-fracture aperture variability, etc.
- Provided regular modeling contributions to EGS Validation Panel

Key issues addressed

 TM coupling is found to have significant negative effect on longevity of EGS thermal output

Project execution

- Single (doublet) and multiple well tasks use same approach
- Milestones met

EGS

Random fracture dist

Well orientation analysis

Fracture aperture variation

EGS Validation:

Technical accomplishments are stateof-the-art (fully coupled THM)

- Including thermomechanical (TM) effects -Flow channeling with more rapid fall-off of production temperature (See figures)
- Manipulating injection/production well locations can be significant for increasing long-term output
- Longevity can be extended with modest increase in injection pressure by increasing well separation distances
- Results support feasibility studies of EGS

Technical challenges

- Developing full THM coupling was a major challenge we met
- Calculations are very time consuming -Simulation efficency was improved to do 3-D

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed	
Finish injection/production doublet analyses	Same	3-31-2015	

EGS Validation:

Sinn

EGS

Production Output vs Time For Schemes A and B

Two Different Orientations Of Inj/Prod Wells
A: N-S and B: E-W
(Cracks Show Only If Flow In Them)

Well Orientation Can Be Important For Output Longevity!

EGS Validation: Flow channeling in penny-shaped crack with variable aperture

EGS

Results of many random fracture aperture simulations

Correlation le	ngth	25 m	50 m	75 m	100 m	125 m	150 m
Production life (year)	mean	19.6	20.8	19.9	19.2	20.4	21.0
	standard deviation	5.8	7.6	8.0	8.5	7.5	7.8
1 Toduction temperature integral	mean	546.8	636.9	605.0	608.8	623.5	704.9
	standard deviation	153.2	289.8	339.4	380.7	302.6	396.0
Average pressure drop (MPa)	mean	1.19	1.92	1.60	2.42	2.39	1.68
	standard deviation	0.56	1.19	1.60	2.18	2.27	1.29

TM Produced Flow Channeling Can Occur In A Single Crack Of Variable Aperture

Sandia Borehole Gas Generator Objective:

Use simulations as diagnostic supporting borehole gas generator fracking experiments

Challenges, barriers, knowledge gaps

- Gas detonation technique is novel approach to permeability enhancement or fracking
- Little to no previous analysis and modeling of complicated fracking process
- Accurate simulations in near-field need to include both shock and detonation effects

Impacts (Costs, Performance, etc.)

- Simulations provide means of analyzing field experiments maximizing performance
- Simulations allow repeating fracking experiments in same hole with same in situ conditions using different parameters but real field experiments do not.
- Trusted simulations cost less than actual experiments

Sandia Borehole Gas Generator Objective:

Use simulations as diagnostic supporting borehole gas generator fracking experiments

Innovative Highlights

- Developing near-field shock and gas fracking capability in single well
- Far-field evaluation of near-simultaneous detonations in multiple wells
- Strong leveraging on other projects for cost reduction

Impact on GTO's EGS goals

- Fracking at injection/production well may be necessary for 5 MW reservoir by 2020
- Maximizing up-front production and long-term output by application of best fracking methods reduces LCOE
- Helps Sandia enhance impact on GTO's EGS goals

Scientific/Technical Approach

Sandia Borehole Gas Generator Simulations:

Use GEODYN hydrocode

- Effort less than 1-year old
- Simulate fracture propagation by combined shock and gas propagated fracturing
- Leverages on development for other projects

Project design highlights

- Obtains initial oxidizer-fuel ratios and gas pressures from SNL field experiments
- Uses results as input into CHEETAH thermochemical code to obtain equation-of-state parameters used in GEODYN
- Effects of detonation in near-/far-field simulated by GEODYN

Key issues addressed

- Near-field effects of shock and gas-propagated fracturing
- Far-field effects of damage due to near-simultaneous detonations in separated boreholes

Project execution

 Milestone met (Obtaining detonation/geometry information suitable for setting up simulations)

Cross-section of experiment

10.0

Alluvium/G

Detonable

Sandia Borehole Gas Generator Simulations:

Preliminary simulations are state-ofthe-art

- Near-field: Shocks and gas-propagated fracturing sometimes can work against each other
- Current damage modeling supports Sandia approach of doing fracks with multiple detonations
- Results can guide further Sandia experiments

Technical challenges successfully addressed

- Including both gas flow in fractures and shock in near-field
- Converting Sandia experiment results to parameters appropriate for GEODYN
- Code mods necessary for meaningful simulations

Near-Field

Far-Field

Comp B Solid Explosive

Shock front (red line) propagates much faster than HE front in crack. Purple line Is 10% strain indicator

Enhanced Ethylene-N₂O mixture used in expt

Original Planned Milestone/ Technical Accomplishment

Actual Milestone/Technical Accomplishment

Date Completed

Obtain Sandia data usable for GEODYN simulations

Same

12-31-2014

Sandia Borehole Gas Generator Simulations:

Movie: Crack opening by fluid with shock

HE:

Density =1,32 g/cc E=3.856 kJ/g Rad=1 cm Fluid in the crack: K=2.2 Gpa Density=1 g/cc Rock: Density=2.6 K=23 Mpa

Time=0

user: vorobiev Wed Mar 25 15:55:05 2015

Future Directions

EGS Validation - 2015

Complete multiple injection/production well analysis to optimize output

Fracking

Sandia Borehole Generator – 2015

- Use developed near-field modeling capability to evaluate results of at least two Sandia field experiments
- Explore application of Sandia generator to far-field fracture enhancement

2016 And Beyond

- Include chemistry effects (e.g., dissolution-precipitation) in EGS simulations
- Develop EGS uncertainty evaluation capability
 - ♦ Automate parameter sensitivity and ranking process using LLNL PSUADE code

Milestone or Go/No-Go	Status & Expected Completion Date
EGS – Multiple Injection/Production Well Study	Just starting – Planned completion is 9-30-15
Sandia – Perform near-/far-field simulations from successfully extracted data	In progress – Planned completion is 9-30-15

Mandatory Summary Slide

Project involves two main tasks

- EGS Validation Evaluate feasibility of long-term production
- Fracking

- Sandia Borehole Gas Generator simulations and analysis
- All tasks/subtasks on schedule for completion

Project impacts on EGS

- Important effects of thermal flow channeling in multifracture/single-fracture systems and other processes on thermal output being evaluated
- Modeling has provided input to EGS Validation panel
- Numerous SGW contributions and a peer-review pub. in progress
- Improved understanding of how near-field processes affect efficiency of Sandia fracking approach

Future plans

- Include chemistry in long-term EGS simulations
- Automate GEOS to perform sensitivity studies and parameter ranking
- Support Sandia in future near- and far-field studies

Additional Information

Publications

- Fu, P. and Carrigan, C. R. Exploring EGS Well Layouts that Mitigate Thermal Drawdown-Induced Flow Channeling, Proceedings, 39th Workshop on Geothermal Reservoir Enginnering Stanford University, Stanford, California Feb 24-26, 2014, SGP-TR-202.
- Guo B., Fu, P., Hao, Y. and Carrigan, C. R. Thermal Drawdown-induced Flow Channeling in A Single Heterogeneous Fracture in Geothermal Reservoir, Proceedings, 40th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California Jan 26-28, 2015, SGP-TR-204.
- Fu, P., Hao, Y., and Carrigan, C.R.: Thermal drawdown-induced flow channeling in fractured geothermal reservoirs. *Rock Mechanics and Rock Engineering, (2015), in revision.*

Presentations

- Guo, B., Fu, P., Hao, Y. and Carrigan, C. R. Thermal Drawdown-induced Flow Channeling In A Single Heterogeneous Fracture in Geothermal Reservoir, Presentation - 2015 Stanford Geothermal Workshop, 1-26-2015
- Fu, P. and Carrigan, C. R. Exploring EGS Well Layouts That Mitigate Thermal Drawdown-Induced Flow Channeling, Presentation 39th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California Feb 24-26, 2014
- Carrigan, C. R. and Fu, P. Modeling: Introduction and Path Forward, Presentation EGS Validation Meeting, November 19-20, Washington, DC
- Fu, P., Hao, Y. and Carrigan, C. R. Thermal Drawdown-Induced Flow In Fractured Geothermal Reservoirs, Presentation- EGS Validation Meeting, November 19-20, 2014, Washington,