U.S. DEPARTMENT OF Energy Efﬁciency &

Geothermal Technologies Office 2015 Peer Review ENERGY

Renewable Energy

FKM type | O-ring

1000
e steamN, ° ®
—_ Ogv @ steam air -
@ 1007 Vv v drilling fluid
% v & brine 4
= °® m  thermal cycle
7] ® v I
E 10% ;AA i AAAAAAA
qling ti = AR ALK ..o Apsenes
grohllmgnpb dded i 2 o VVVVVVV9$$¢¥§W " .
amples embedded in epoxy oot 8Re . . . a® «® —
iy - ‘3 ...Q.Ol..
Sample holder 000888888 .
"mpmmmnmmmnm®® 0 6ihg material
0.1

o 1 2 3 4 5 6
Distance (mm)
SNL -developed state-of-the-art modulus profiling apparatus (left) and

modulus-distance relation of Type | FKM O-ring (right) after exposure to

different environments
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Objectives: In FY 14, the objective of this BNL-SNL joint project was to accomplish the
baseline studies and material characterization of existing high-temperature and
performance commercial elastomeric materials for use as wellbore-, casing-, and
fracturing pip packers, pumping systems, drilling tool components, etc. under both
conventional hydrothermal and EGS well environments, including drilling fluid at
300°C. In FY 15, the focus centers on conducting second round of simulated well
environmental exposure tests for advanced and state-of-the art materials selected
based upon information obtained in FY 14 study.

Impact: Compared with that of conventional materials, the elastomeric materials to be
developed will extend their service-life cycles up to 300°C,and will afford the
following benefits:

« Potential deployment of down-hole drilling and pumping tools and annular isolation
packers to higher temperature environment than currently available (up to 200°C);

« Lifecycle extension of elastomer-depending tools and systems;
» Reduction of drilling- and fracturing-operation and tool maintenance costs;

« Reduction of operation and maintenance costs at geothermal power plants because
of the elimination of time-consuming and expensive repairing and replacing
expenditures.
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High-temperature elastomeric polymers to be evaluated

(O-ring relative cost comparison based
maximum service temperature on EPDM)
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Five different testing environments

1. 5 cycle steam-cooling fatigue in N, [One cycle:300°C 4. 300°C-7day CO,-rich brine at pH 4-5
steam for 24 hrs- 25°C (cooling rate of 50°C/hr)] under
pressure of 1200 psi Chorine 13.5
Sodium 6
2. 5 cycle steam-cooling fatigue in air (One cycle: Calcium 2
Potassium 15
same as that of No. 1 test) under same pressure Vegnesium o5
3. 300°C-7day drilling fluid at pH 9-10 -
Carbon dioxide 15,000
Water 741083 ST AL
Barite 1510 10 . 0
: Zinc 370
Ca-Bentonite 7t09 Soron 250
Caustic soda 03 silicon 250
Soda ash 1 Barium 130
Polyanionic cellulose (PAC) 12t003 Dihydrogen sulfide 70
Xanthan gum 0.5t00.3
stareh 05 5. 5 cycle thermal shock (One cycle: 300°C-24hr
-heat and 25°C water quenching)
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Original Planned Milestone/ Technical Actual Milestone/Technical Accomplishment Date Completed
Accomplishment

Task 1. Collection of commercial elastomeric Completed. March 2014
materials
Task 2. Short-term brine and drilling fluid Completed. June 2014

exposure, and 5-cycle heat or steam-cooling
fatigue tests

Task 3. Post-test analyses Completed. September 2014
Task 4. Deliver report to DOE and geothermal Completed November 2014
industries T. Sugama ,T. Pyatina (BNL), and E. Redline, J.

McElhanon, D. Blankenship (SNL), “Evaluation
of the performance of O-rings made with
different elastomeric polymers in simulated
geothermal environments at 300°C,” BNL-SNL
annual technical report.

Task 5. Evaluation of upgraded EPDM-, FEPM-, As of March 2015, 60 % completed.
and FFKM-based O-rings

Task 6. Evaluation of elastomeric composites As of March 2015, 30 % completed.
related to packers and pump bearings

Task 7. Post-test analyses

Task 8. Deliver report to DOE and geothermal
industries
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EPDM Thermogravimetryic (TG) and Derivative
Thermogravimetric (DTG) Analyses
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Type I FKM TG and DTG Analyses

Testing T, ° C Tiaxd, MLR*, Tinaxz, MLR, IDR,
s, ATR-FTIR analysis for Type | FKM after Eiﬁcn environment C %.min/° C C %.min/* C  %.min/°C
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Type Il FKM

TG and DTG Analyses
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FEPM

3 Testing T, ° C Tomax . C IDR %.min/°C
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TG and DTG Analyses
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FSR

ATR-FTIR analysis for FSR after testing
at No.1 environment
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Thermogravimetry (TG) and Derivative Thermogravimetry

(DTG) Analyses

Testing T, ° C Toax, . C IDR %.min/°C
environment
Control 168 522 2.43
No. 1 51 - -
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Cross-sectional modulus profiles of different O-rings after exposure in
five different environments
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Ranking of stability, with one being the best, of different polymer O-rings for
each environment and comparison of their raw material costs based upon
EPDM as the benchmark.

Elastomeric Non-aerated Aerated steam- Drilling  CO,-rich geo- Heat-quenching
polymer (raw steam-cooling  cooling fluid brine fluid thermal shock
material cost

factor based on

EPDM)

EPDM (1)

Type | FKM
(1x2.5)

Type Il FKM
(1x2.6)
FEPM (1x5.6)

FFKM (1x13.8)
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FSR (1x6.3)
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Milestone or Go/No-Go Status & Expected
Completion Date

Task 1. Continue evaluation and characterization of May. 2016
advanced, economic elastomeric materials

Task 2. Conduct field exposure test for screened materials at Jun. 2016
Ormat power plant site.

Task 3. Post-field test analyses Sep. 2016

Task 4. Deliver annual report covering all information Dec. 2016
obtained in FY2016 to DOE and prepare peer-reviewed
journal article

Go/no-go decision

14 | US DOE Geothermal Office eere.energy.gov



Summary

FY2014 (Oct. 2013-Sep. 2014)
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FY2015 (Oct. 2014- Mar.

Target/Milestone

Results
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» Complete short-term exposure tests for O-rings

made with six different elastomeric polymers in five

different environments at 300°C and post-test
analyses.
» Deriver annual report describing the details of all

experimental works performed in FY14 to DOE and

geothermal industries.

* FY14 annual report including the results below was

completed.

* The relative strengths and weaknesses of these O-

rings, as well as their chemical compatibility,
depended on the environments and elastomer
structure.

* Lowest cost EPDM possessed a relatively good
resistance to all employed environments, except
for thermal shock.

* FFKM displayed outstanding resistance to these

harsh environments .However, one major concern
may be its extremely high cost.

+ For integrity and stability in conjunction with
economical aspect, FEPM was attractive, despite
some degradation after thermal shock.

» |deal cost effective and high-performance
elastomeric materials are to possess those
properties bridging the gap between high cost
FFKM and FEPM or EPDM.

2015)

*Evaluate integrity of advanced EPDM-, FEPM-, and
FFKM-based O-rings in 300°C various harsh
environments.

*Evaluate stability of EPDM-, Type Il and Ill FKM-, and
FEPM-based elastomeric composites related to packers
and pump bearings in 300°C various harsh
environments.

*As of March, ASTM tensile and elongation tests of
O-rings after exposure testing was completed.
Other post-test analyses are currently underway.
*As of March, the exposure test of dumbbell-
shaped samples made with four different packer-
related elastomeric polymer composites in six
different environments at 300°C was completed.
ASTM tensile, modulus, and elongation tests for
exposed samples are currently being undertaken.



