SNL-developed state-of-the-art modulus profiling apparatus (left) and modulus-distance relation of Type I FKM O-ring (right) after exposure to different environments **Elastomeric Material Evaluation and Development** Project Officer: Joshua Mengers Total Project Funding: \$800K May 11-14, 2015 Principal Investigators: Dr. Toshifumi Sugama (BNL) and Dr. Erica Redline (SNL) Co-Pls: Dr. Tatiana Pyatina (BNL), and Dr. James McElhanon and Dr. Douglas Blankenship (SNL) Presenter Name: Dr. Toshifumi Sugama Brookhaven National Laboratory and Sandia National Laboratories ## Relevance/Impact of Research **Objectives:** In FY 14, the objective of this BNL-SNL joint project was to accomplish the baseline studies and material characterization of existing high-temperature and performance commercial elastomeric materials for use as wellbore-, casing-, and fracturing pip packers, pumping systems, drilling tool components, etc. under both conventional hydrothermal and EGS well environments, including drilling fluid at 300°C. In FY 15, the focus centers on conducting second round of simulated well environmental exposure tests for advanced and state-of-the art materials selected based upon information obtained in FY 14 study. **Impact:** Compared with that of conventional materials, the elastomeric materials to be developed will extend their service-life cycles up to 300°C, and will afford the following benefits: - Potential deployment of down-hole drilling and pumping tools and annular isolation packers to higher temperature environment than currently available (up to 200°C); - Lifecycle extension of elastomer-depending tools and systems; - Reduction of drilling- and fracturing-operation and tool maintenance costs; - Reduction of operation and maintenance costs at geothermal power plants because of the elimination of time-consuming and expensive repairing and replacing expenditures. ## Scientific/Technical Approach ### High-temperature elastomeric polymers to be evaluated ## Scientific/Technical Approach #### Five different testing environments - 1. 5 cycle steam-cooling fatigue in N_2 [One cycle:300°C steam for 24 hrs- 25 °C (cooling rate of 50°C/hr)] under pressure of 1200 psi - 2. 5 cycle steam-cooling fatigue in air (One cycle: same as that of No. 1 test) under same pressure - 3. 300°C-7day drilling fluid at pH 9-10 | Major chemical ingredients | Percent | |-----------------------------|------------| | Water | 74 to 83 | | Barite | 15 to 10 | | Ca-Bentonite | 7 to 5 | | Caustic soda | 0.3 | | Soda ash | 1 | | Polyanionic cellulose (PAC) | 1.2 to 0.3 | | Xanthan gum | 0.5 to 0.3 | | Starch | 1-0.5 | | Starch | 1-0.5 | 4. 300°C-7day CO₂-rich brine at pH 4-5 | Major Components | Percent | |--------------------|---------| | Chorine | 13.5 | | Sodium | 6 | | Calcium | 2 | | Potassium | 1.5 | | Magnesium | 0.9 | | Minor Components | PPM | | Carbon dioxide | 15,000 | | Iron (ferrous) | 1000 | | Manganese | 930 | | Lithium | 410 | | Zinc | 370 | | Boron | 330 | | Silicon | 250 | | Barium | 130 | | Dihydrogen sulfide | 70 | | | | 5. 5 cycle thermal shock (One cycle: 300°C-24hr -heat and 25°C water quenching) | Original Planned Milestone/ Technical Accomplishment | Actual Milestone/Technical Accomplishment | Date Completed | |---|--|----------------| | Task 1. Collection of commercial elastomeric materials | Completed. | March 2014 | | Task 2. Short-term brine and drilling fluid exposure, and 5-cycle heat or steam-cooling fatigue tests | Completed. | June 2014 | | Task 3. Post-test analyses | Completed. | September 2014 | | Task 4. Deliver report to DOE and geothermal industries | Completed T. Sugama ,T. Pyatina (BNL), and E. Redline, J. McElhanon, D. Blankenship (SNL), "Evaluation of the performance of O-rings made with different elastomeric polymers in simulated geothermal environments at 300°C," BNL-SNL annual technical report. | November 2014 | | Task 5. Evaluation of upgraded EPDM-, FEPM-, and FFKM-based O-rings | As of March 2015, 60 % completed. | | | Task 6. Evaluation of elastomeric composites related to packers and pump bearings | As of March 2015, 30 % completed. | | | Task 7. Post-test analyses | | | | Task 8. Deliver report to DOE and geothermal industries | | | 5 | US DOE Geothermal Office ### EPDM ## Thermogravimetryic (TG) and Derivative Thermogravimetric (DTG) Analyses | Testing environment | T_o , $^{\circ}$ C | T _{max.,} ° C | IDR* _,
%.min/°C | |---------------------|------------------------|------------------------|-------------------------------| | Control | 118 | 476 | 2.86 | | No. 1 | 94 | 467 | 2.65 | | No. 2 | 44 | 458 | 2.45 | | No. 3 | 95 | 514 | 3.62 | | No. 4 | 117 | 474 | 2.72 | | No. 5 | 29 | _** | - | *Integrated decomposition rate, **not applicable #### **Degradation Mechanism of EPDM** ### Type I FKM #### **TG and DTG Analyses** | Testing environment | T_{ω} ° C | T _{max.1,} ° C | MLR*,
%.min/° C | <i>T</i> _{max.2,} | MLR,
%.min/° C | IDR,
%.min/°C | |---------------------|--------------------|-------------------------|--------------------|----------------------------|-------------------|------------------| | Control | 300 | 478 | 3.52 | - | - | 3.52 | | No. 1 | 74 | 425 | 1.10 | 533 | 0.04 | 1.14 | | No. 2 | 50 | 462 | 1.13 | 539 | 0.28 | 1.42 | | No. 3 | 197 | 455 | 1.83 | - | - | 1.83 | | No. 4 | 68 | 469 | 1.82 | 169 | 0.03 | 1.85 | | No. 5 | 286 | 479 | 2.21 | - | - | 2.21 | #### **Degradation Mechanism of Type I FKM** EDX mapping of Ca coupled with micro-structure images for cross-sectional area A: control B: After exposure in drilling fluid ### Type II FKM #### **TG and DTG Analyses** | Testing | T_{o} C | T_{max} , $^{\circ}$ C | IDR, %.min/C | |-------------|-------------|----------------------------|--------------| | environment | | | | | Control | 228 | 497 | 3.39 | | No. 1 | 65 | 484 | 2.27 | | No. 2 | 53 | 484 | 1.85 | | No. 3 | 54 | 465 | 1.09 | | No. 4 | 107 | 469 | 1.85 | | No. 5 | 241 | 492 | 2.93 | #### EDX mapping of Ca coupled with micro-structure images for cross-sectional area A: control 0.40mm Calka 2.0 x 1.6mm 0.00 B: After exposure in drilling fluid C: After exposure in brine #### HF trapping scheme by CaO pigment present in O-ring #### **FEPM** #### **TG and DTG Analyses** | Testing | T_{o} $^{\circ}$ C | T_{max} , ° C | IDR, %.min/°C | |-------------|------------------------|-----------------|---------------| | environment | | | | | Control | 152 | 514 | 3.64 | | No. 1 | 54 | 506 | 3.35 | | No. 2 | 47 | 502 | 3.25 | | No. 3 | 114 | 480 | 2.83 | | No. 4 | 95 | 513 | 3.66 | | No. 5 | 27 | 507 | 0.65 | #### **Degradation Mechanism of FEPM** EDX mapping of Ca coupled with micro-structure images for cross-sectional area A: control #### **FFKM** #### **TG and DTG Analyses** | Testing environment | $T_{o'}$ ° C | T_{max} , ° C | IDR, %.min/°C | |---------------------|----------------|-----------------|---------------| | Control | 354 | 478 | 3.58 | | No. 1 | 273 | 483 | 3.58 | | No. 2 | 162 | 478 | 3.59 | | No. 3 | 229 | 494 | 3.53 | | No. 4 | 141 | 478 | 3.52 | | No. 5 | 372 | 487 | 3.66 | #### FFKM chemical structure $(-C_2F_4-)_x [-CF_2-(CFOCF_3)-]_v$ Poly-TFE Poly-PMVE EDX mapping of Ca coupled with micro-structure images for cross-sectional area A: control **B:** After exposure in brine #### **FSR** ## Thermogravimetry (TG) and Derivative Thermogravimetry (DTG) Analyses | Testing environment | T_{ω} ° C | T_{max} , ° C | IDR, %.min/°C | |---------------------|--------------------|-----------------|---------------| | Control | 168 | 522 | 2.43 | | No. 1 | 51 | - | - | | No. 2 | _* | - | - | | No. 3 | 40 | 422 | 0.009 | | No. 4 | 41 | 563 | 0.30 | | No. 5 | 49 | 498 | 0.91 | * Untested # Cross-sectional modulus profiles of different O-rings after exposure in five different environments Ranking of stability, with one being the best, of different polymer O-rings for each environment and comparison of their raw material costs based upon EPDM as the benchmark. | Elastomeric
polymer (raw
material cost
factor based on
EPDM) | Non-aerated steam-cooling | Aerated steam-
cooling | Drilling
fluid | CO ₂ -rich geo-
brine fluid | Heat-quenching
thermal shock | |--|---------------------------|---------------------------|-------------------|---|---------------------------------| | EPDM (1) | 2 | 3 | 2 | 3 | 4 | | Type I FKM (1x2.5) | 4 | 5 | 5 | 5 | 3 | | Type II FKM (1x2.6) | 3 | 4 | 4 | 4 | 2 | | FEPM (1x5.6) | 2 | 2 | 3 | 2 | 4 | | FFKM (1x13.8) | 1 | 1 | 1 | 1 | 1 | | FSR (1x6.3) | 5 | 6 | 6 | 6 | 5 | ### **Future Directions** | Milestone or Go/No-Go | Status & Expected Completion Date | |--|-----------------------------------| | Task 1. Continue evaluation and characterization of advanced, economic elastomeric materials | May. 2016 | | Task 2. Conduct field exposure test for screened materials at Ormat power plant site. | Jun. 2016 | | Task 3. Post-field test analyses | Sep. 2016 | | Task 4. Deliver annual report covering all information obtained in FY2016 to DOE and prepare peer-reviewed journal article | Dec. 2016 | | Go/no-go decision | | 14 | US DOE Geothermal Office | | FY2014 (Oct. 2013-Sep. 2014) | FY2015 (Oct. 2014- Mar. 2015) | |------------------|--|---| | Target/Milestone | Complete short-term exposure tests for O-rings made with six different elastomeric polymers in five different environments at 300°C and post-test analyses. Deriver annual report describing the details of all experimental works performed in FY14 to DOE and geothermal industries. | •Evaluate integrity of advanced EPDM-, FEPM-, and FFKM-based O-rings in 300°C various harsh environments. •Evaluate stability of EPDM-, Type II and III FKM-, and FEPM-based elastomeric composites related to packers and pump bearings in 300°C various harsh environments. | | Results | FY14 annual report including the results below was completed. The relative strengths and weaknesses of these Orings, as well as their chemical compatibility, depended on the environments and elastomer structure. Lowest cost EPDM possessed a relatively good resistance to all employed environments, except for thermal shock. FFKM displayed outstanding resistance to these harsh environments .However, one major concern may be its extremely high cost. For integrity and stability in conjunction with economical aspect, FEPM was attractive, despite some degradation after thermal shock. Ideal cost effective and high-performance elastomeric materials are to possess those properties bridging the gap between high cost FFKM and FEPM or EPDM. | •As of March, ASTM tensile and elongation tests of O-rings after exposure testing was completed. Other post-test analyses are currently underway. •As of March, the exposure test of dumbbell-shaped samples made with four different packer-related elastomeric polymer composites in six different environments at 300°C was completed. ASTM tensile, modulus, and elongation tests for exposed samples are currently being undertaken. |