

High Temperature 300°C Directional Drilling System

Project Officer: Bill Vandermeer Total Project Funding: \$ 5 M

May 11, 2015

Kamalesh Chatterjee EE0002782 Baker Hughes

Track 3 EGS1 - High Temp Tools, Drilling Systems

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Relevance/Impact of Research

A Directional Drilling System (DDS, EE0002782) and directional Measurement-While-Drilling system (MWD, EE0005505) for geothermal applications will operate in hard rock at depths as great as 10,000 meters and temperatures as high as 300°C.

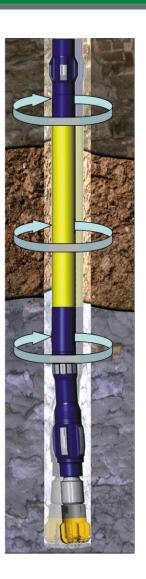
- Commercial DDS tools are functional up to 175°C/200°C
- Aligned with GTO R & D goals
 - Directional Drilling of EGS wells at high temperature.
 - Drilling cost a significant part of total budget in geothermal wells.
 - Conventional rotary drilling not practical for directional wells.

Proposed system concept

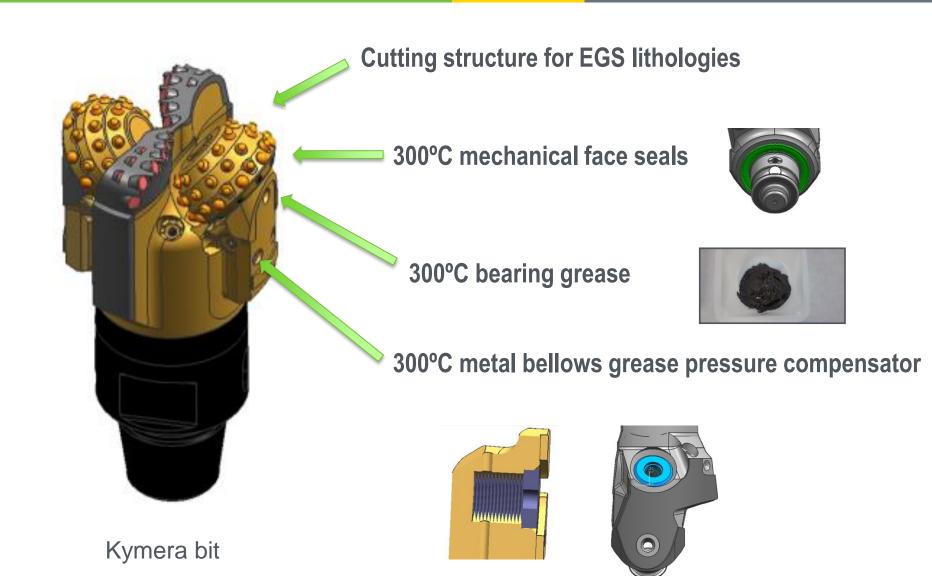
Drill Bit

Tricone (hard) and Kymera hybrid (interbedded) matched to motor and fluid requirements

Metal to metal Positive Displacement Motor (PDM),5/6 lobe 150 rpm, 4000 ft lb torque

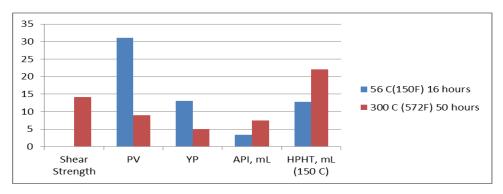

Drilling Fluid / Equipment

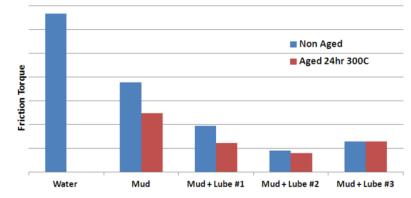
300°C stable, lubricant for metal to metal motor operation



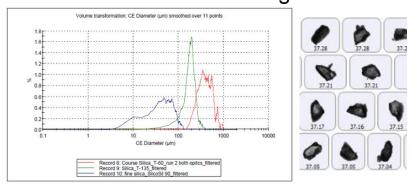
3 | US DOE Geothermal Office

Innovations in drill bit





300°C Drilling Fluid


 Thermally stable drilling fluid aging @ 300°C

 Lubricant / Wear reduction – Increase motor run time

 Test fluids with abrasive particles for metal-metal motor coating tests



Block on ring wear test

Innovations in motor



for high weight on bit hard rock drilling

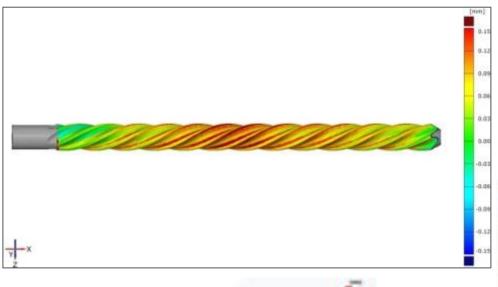
Challenges - Manufacturing
Coating
Assembly

Coating of the metal to metal motor

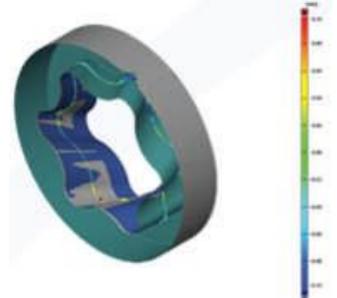
Stator coating – diffusion process

Gas Nitriding + K12 seal

Tested coatings with coupons 4 3/4 motors for performance testing 6 3/4 motors are DOE deliverables



Testing:


- Hardness testing
- Slurry abrasion testing
- Measure wear through surface profilometry
- Aging
- Pitting corrosion potential
- Fluid erosion test

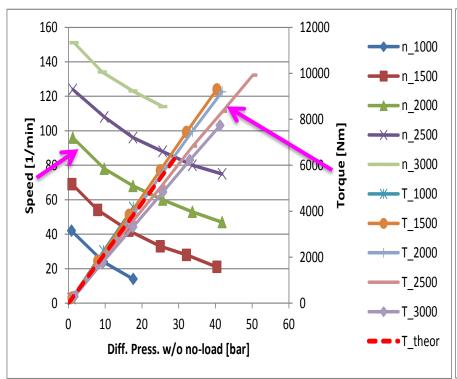
Stator and rotor design and machining at Celle, Germany

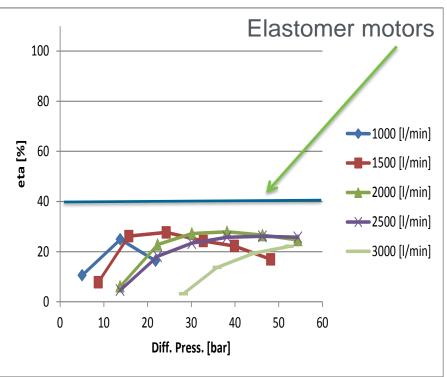
Challenges: machining and assembly

Tolerance = 0.5 mm

High temperature test stand

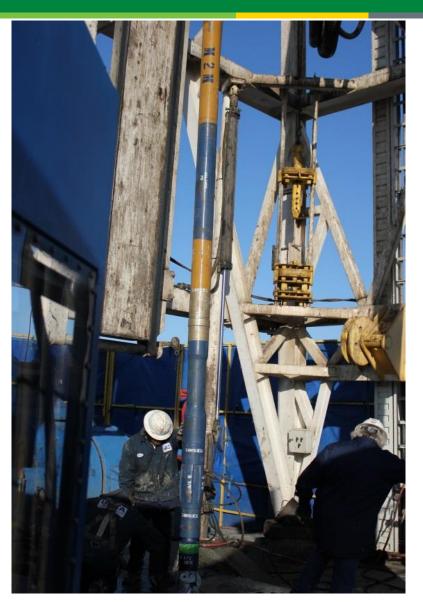
Pressurization System


Test Vessel with Motor Inside


Cooling Unit

Mechanical Seal

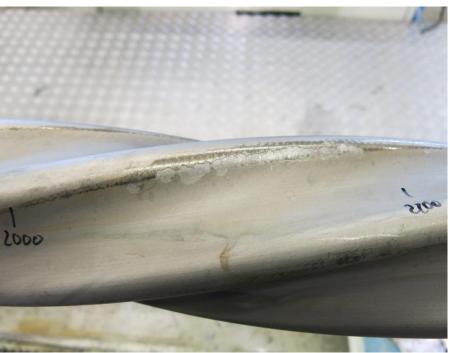
Flow loop test of metal to metal motor


Torque: 4000 ft lb = 5423 N m was achieved at approx. 30 bar = 435 psi

Scope for efficiency improvement: Tighter tolerance, increased pressure

BETA test - drilling in experimental well

System drilled 180 ft in hard granite 15-25 ft/hour


Build-up-rate 6º/100ft

Dog-leg-severity 7.2°/100ft

Metal to metal motor is used to drill a directional well in granite – first in industry

Wear of rotor after drilling test

Special screens are necessary at the surface

Accomplishments - I

- All project tasks close to completion except the field trial.
 Tools are ready for field trail scheduled for July.
- The directional drilling system (metal to metal motor) has been used to drill a directional well in granite – first in industry.
- System drilled 180 ft in hard granite 15-25 ft/hour
- Build-up-rate 6º/100ft, dog-leg-severity 7.2º/100ft
- Flow loop test of motor completed, efficiencies compared, drill bit simulator test completed
- High temperature test stand to compare motor parameters is operational. Tests have been conducted and results being analyzed.

Accomplishments - II

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Phase 1 Concept	System concepts created	Q2 2011
Phase 2 Design	Designs created for Tricone and Kymera hybrid bits, metal-metal motor, drilling fluid with lubricant additive	Q3 2013
Phase 3 Manufacture	2 tools ready for field trial, 3 rd in assembly	Q4 2014
Phase 4 Testing	Flow loop test of motor	April 2014
	Simulator test of drill bit	Q2 2014
	BETA test	April 2014
	Motor test stand	Q2 2015
	Field test	Q3 2015

2014 Geothermal Energy Association (GEA) Honors award for Technological Achievement (August 5, 2014)

Future Directions

- Complete assembly of the 3rd tool (two are complete)
- Conduct the field test at as high a temp as possible
- Follow up on the patent/invention disclosures and publications
- Complete the final project report

Milestone or Go/No-Go	Status & Expected Completion Date
Field test	7/31/2015
Project end	Sept 2015

Mandatory Summary Slide

- Successful completion of a High Temperature 300°C Directional Drilling System.
- 300°C drill bits without elastomers tested in BETA
- Metal to metal motor (without elastomers) is used to drill a directional well in granite – first in industry
- 300°C fluid with lubricant ready for field test.
- Flow loop test demonstrated efficiency ~30%
- High temperature test stand complete, ready to compare metal to metal motors with conventional ones
- 2 tools ready for field trial, expected in Q3 2015