
#### **Geothermal Technologies Office 2015 Peer Review**





#### Self-degradation technology by *in-situ* gel → sol phase transition

#### **Temporary Sealer Materials**

Project Officer: Joshua Mengers Total Project Funding: \$120,000 May 11-14, 2015 Principal Investigator: Dr. Toshifumi

Sugama

Co-PI: Dr. Tatiana Pyatina

Presenter Name: Dr. Toshifumi Sugama Brookhaven National Laboratory

This presentation does not contain any proprietary confidential, or otherwise restricted information.

## Relevance/Impact of Research



Objectives: Using BNL-developed cementitious sealing material, the objectives of this project are 1) to develop an advanced self-degradation enhancing additive, which aids in converting bulk cement into fine powder at ≥150°C, 2) to design set-controllable formula at 85°C, 3) to determine mechanical behaviors of sealer before self-degradation, 3) to evaluate solubility of degraded cement in less-or non-corrosive acids at 90°C, and 4) to develop plugging technology using self-decomposable PVA fiber for 0.5 to 2.0 in. wide slots.

#### Impact:

- Reduction of total costs of sealing and multi-fracture drilling operations including the elimination of three major issues,1)lostcirculation problem, 2)additional isolation liners, and 3)managed pressure drilling, and also the use of inexpensive raw material.
- New science and technology regarding self-degradable cementitious materials.

## Scientific/Technical Approach



Eight material criteria for self-degradable sealers:

- One dry component product
- Plastic viscosity, 20 to 70 cp at 300 r.p.m
- Maintenance of pumpability for at least 3 hours at 85°C
- Compressive strength >2000 psi at 85°C
- Be self-degradable at ≥150°C
- Expandable and swelling properties; >0.5% of total volume of sealer
- Excellent plugging performance through fractures of up to 2.0 in. wide spacing at ~ 85°C
- Solubility ≥70wt% of degraded cement in acid at 90°C.

| Original Planned Milestone/ Technical Accomplishment                                        | Actual Milestone/Technical<br>Accomplishment                                                                                                                                                                                                                                                                                                                                                                                 | Date<br>Completed         |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Task 1. Develop advanced self-degradation enhancing additive                                | Completed  -T. Sugama and T. Pyatina "Utilization of PVA flakes in promoting self-degradation of temporary cementitious fracture sealing material," GRC Transaction 38 (2014) 331-338.  2014 GRC Best Presentation Award  -T. Sugama and T. Pyatina "Effect of sodium carboxymethyl celluloses on water-catalyzed self-degradation of 200°C-heated alkali-activated cement," Cement & Concrete Composites 55 (2015) 281-289. | April 2014                |
| Task 2. Test plugging performance of self-<br>decomposable PVA fiber for 0.5 X 0.5 in. slot | Completed                                                                                                                                                                                                                                                                                                                                                                                                                    | July 2014                 |
| Task 3. Assess effect of PVA fiber on improving toughness of sealer                         | Completed                                                                                                                                                                                                                                                                                                                                                                                                                    | October 2014 January 2015 |
| Task 4. Formulate set-controllable cementitious sealer                                      | Completed                                                                                                                                                                                                                                                                                                                                                                                                                    | January 2013              |
| Task 5. Evaluate less- or non-corrosive acid to dissolve a crumbled sealer                  | As of March 2015, 60% completed                                                                                                                                                                                                                                                                                                                                                                                              |                           |
| Task 6. Develop plugging technology for 1.5-2.0 in. slots                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |



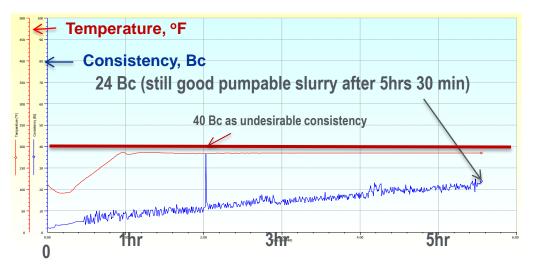
## **Cement System**

#### Alkali-activated pozzolana cements as matrix

- -Class C fly ash as major cement-forming material
- -Granulated blast-furnace slag as minor cement-forming material

#### Additives

- -Sodium metasilicate (SMS) as alkali activator
- -PVA (Mw 195,000) flake as self-degradation promoter
- -PVA fiber (6 and 19 mm long x  $\sim$ 15 $\mu$ m diam.) as self-decomposable bridging material
- -MgO as volume-expanding additive
- -Sodium gluconate (SG) as fiber wetting and set-control additive


#### Major hydration product at 85°C

Calcium silicate hydrate (C-S-H phase I)



Thickening time measurements of sealer slurry at 85°C by HPHT consistometer under

dynamic condition at 5500 psi, followed by micro-calorimeter at 85°C under static condition



Onset of setting: 8hr 25min
Onset of setting: 8hr 25min

Time, hour

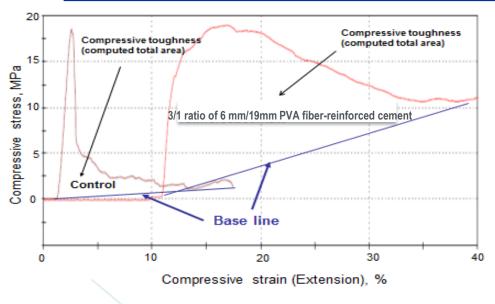


**Chandler HPHT Consistomer** 

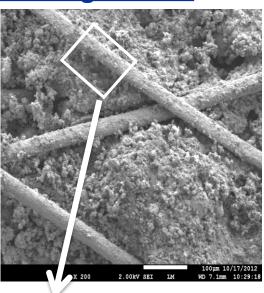


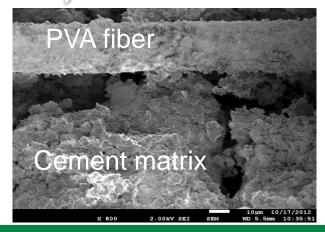
Isothermal Micro-calorimetry



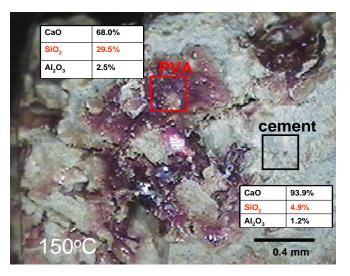

Comparison of plugging performances of sealers made by the combination of 19 mm- and 6 mm-long PVA fibers for 0.5-in. wide x 6-in. long x 0.5 in. high slot nozzle

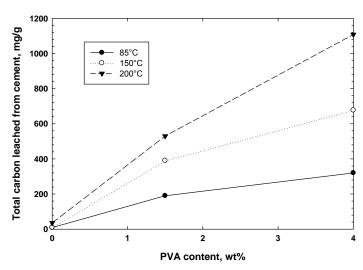
| Fiber          | Content,<br>wt% | Filtration loss of sealer, wt% |                    |                     |                     |                     |                      |
|----------------|-----------------|--------------------------------|--------------------|---------------------|---------------------|---------------------|----------------------|
|                |                 | 20 psi<br>pressure             | 50 psi<br>pressure | 100 psi<br>pressure | 200 psi<br>pressure | 500 psi<br>pressure | 1000 psi<br>pressure |
| PVA (6mm)      | 5               | 100                            | 100                | 100                 | 100                 | 100                 | 100                  |
| PVA (19<br>mm) | 4               | 32.7                           | 100                | 100                 | 100                 | 100                 | 100                  |
| PVA (19mm)     | 2.0             | 2.8                            | 10.9               | 100                 | 100                 | 100                 | 100                  |
| PVA (6mm)      | 1.0             |                                |                    |                     |                     |                     |                      |
| PVA (19mm)     | 2.0             | 5.8                            | 0                  | 0                   | 0                   | 0                   | 0                    |
| PVA (6mm)      | 2.0             |                                |                    |                     |                     |                     |                      |
| PVA (19mm)     | 1.0             | 4.1                            | 8.9                | 0                   | 0                   | 0                   | 0                    |
| PVA (6mm)      | 3.0             |                                |                    |                     |                     |                     |                      |



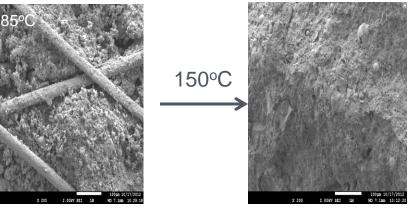


High-pressure slot plugging apparatus

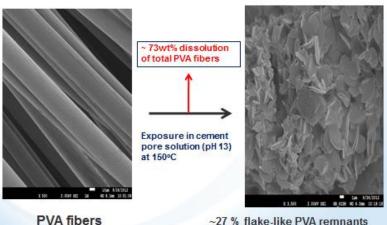
# Compressive-strength and-toughness for non-reinforced and PVA fiber-reinforced cements after autoclaving at 85°C





|                             | Compressive strength, psi | Compressive toughness, N-mm/mm <sup>3</sup> |
|-----------------------------|---------------------------|---------------------------------------------|
| Control (no PVA fiber)      | 2390                      | 0.41                                        |
| PVA fiber-reinforced cement | 2479                      | 3.94                                        |







## Leaching of PVA from cement at 85,150, and 200°C

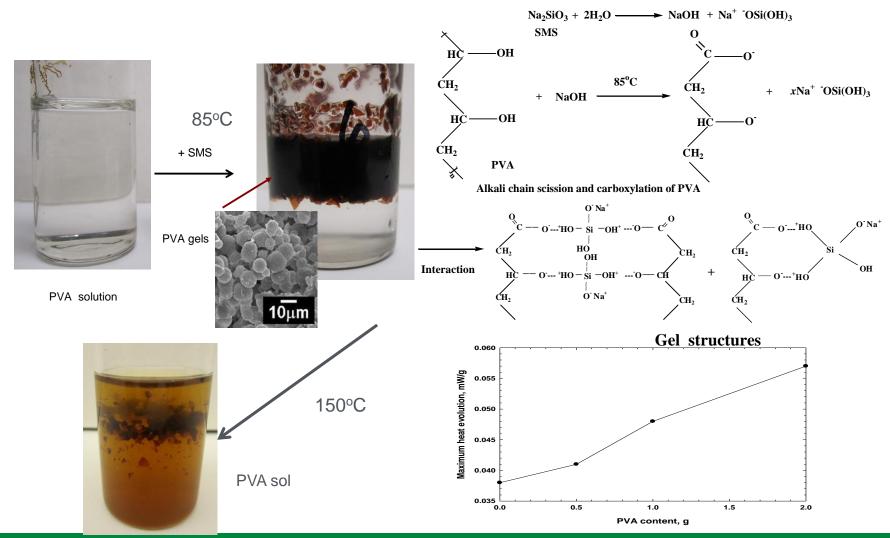






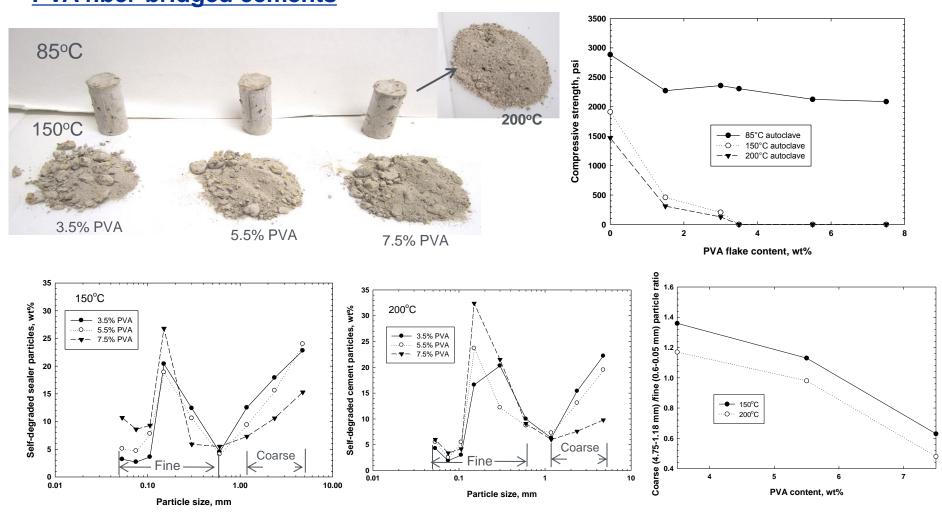




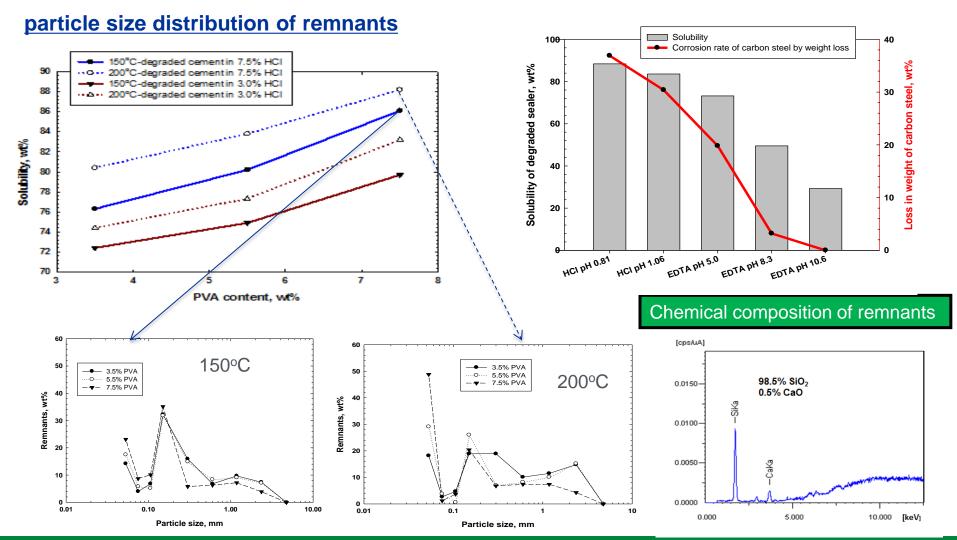

Self-decomposed PVA fiber (right) in cement at 150°C

~27 % flake-like PVA remnants

#### PVA micro-gels formed in PVA/SMS mixed solution at 85°C and gels→sol


transition at ~150°C

Reaction route to form PVA gel and gel's chemical structure






## Self-degradation and compressive strength at 150 and 200°C for 85°C-cured PVA fiber-bridged cements



#### Solubility of self-degraded cement in mineral (HCI) and organic (EDTA) acids at 90°C and



## **Future Directions**



| Milestone or Go/No-Go                                                                                                         | Status & Expected Completion Date |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Task 1. Upgrade current high-pressure API slot apparatus to be capable of being raised to hydrothermal temperature of 250°C.  | May 2016                          |
| Task 2. Conduct in-house scale-up demonstration of temporary sealer performance from plugging and degradation to dissolution. | Aug. 2016                         |
| Task 3. Deliver report covering all information obtained in FY 2015 to DOE and prepare peer-reviewed journal article.         | Oct.2016                          |
| Task.4 Complete technology transfer to geothermal industry                                                                    | Dec.2016                          |
| Go/no-Go Decision                                                                                                             |                                   |

|                  | FY2014 (Nov. 2013-<br>Oct. 2014)                                                                                                                                                                                                                                                                                          | FY2015 (Nov. 2014-Mar. 2015)                                                                                                                                                                                                                                                                             |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Target/Milestone | <ul> <li>Develop advanced self-degradation promoter</li> <li>Test plugging performance of self-decomposable PVA fiber</li> <li>Assess mechanical behavior of PVA fiber-reinforced sealer</li> </ul>                                                                                                                       | •Develop set-controlling additive suitable for sealer formula at 85°C •Evaluate performance of less- or non-corrosive acids in dissolving crumbled sealer                                                                                                                                                |
| Results          | •The combination of PVA-flake and - fiber not only adequately plugged 0.5 x 0.5 in. square slot under pressure of 1000 psi, but also served in converting bulk cement into fine powder with average particle size of 0.3 mm at hydrothermal temperatures 150- 200°C. •PVA fiber offered improved toughness of the sealer. | •For former target, sodium gluconate as set controlling additive maintained pumpability >8 hours of cement slurry. •For the latter, organic EDTA mild acid (pH 5) dissolved 75 wt% of crumbled sealer at 90°C and contributed to a minimal corrosion of steel casing compared with that of HCI (pH 0.8). |