Geothermal Technologies Office 2015 Peer Review

Play Fairway Analysis of Geothermal Potential across the State of Hawaii

May 11, 2015

Nicole Lautze University of Hawaii (UH)

Track: Hydrothermal

Project Officer: Mark Ziegenbein

Total Project Funding: \$386,369 (inc. 10% cost share)

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Relevance/Impact of Research

THE MOST EXPENSIVE AND LEAST EXPENSIVE STATES

FOR FLECTRICITY

Project Objectives:

- Identify, obtain, and compile existing geothermal relevant data across the State of Hawaii;
- Rank each dataset in terms of its ability to indicate subsurface Heat, Fluid, and Permeability;.
- Develop broadly applicable geostatistical method to produce statewide Play Fairway map(s).

Impact / Innovation:

- Hawaii has unique geologic setting;
- Hawaii pays ≥ twice as much for electricity as any other state;
- Last statewide geothermal assessment (1983) found potential resource on *all* islands but little exploration since;
- **Step forward:** compilation of data currently among disparate sources; incorporate **CURRENT** techniques and information; data integration in a probability model/map of state; ID path ahead.

* ~20% of Hawaii's land is federally owned; Fed agencies paid \$350M to HECO in 2014

KENTUCKY

- Lower risk of development & exploration
- Lower electricity costs to 6c / kWh by 2020
- Develop undiscovered resources

2 | US DOE Geothermal Office

030(EPA 2043)

\$0.37

Technical Approach:

- (1) Identify, obtain, and compile geothermal relevant data into GIS project
- (2) Weight each dataset in terms of relevance to 3 desiderata: Heat (H); Fluid (F); Perm. (P)
- (3) Apply geostatistical modeling to:
 - map out estimates for joint probability of H, F, P across the whole state
 - identify high priority areas for collecting new data
 - be generally applicable to other settings

Technical Highlights:

- Team of 15 individuals (7 Pl/co-ls, 1 Masters, 1 senior thesis student, 6 employees)
- Weekly team meetings
- Data from multiple state agencies and > 40 published references are compiled

3 | US DOE Geothermal Office eere.energy.gov

 To develop model that incorporates disparate data types, pertaining to different resource qualities, with variable quantities and spatial relevance.

Execution of Approach: Water Well Chemistry

Puna Wells Ternary Diagram With Temperature Contours (0 to 400 deg. C)

Pahoa, Airstrip, Kapoho, Keauohana 1, Alison, Kapoho Test, Malama Ki, GTW3 Wells

- Assemble HI water chemistry database from all available sources (Boards of Water Suppy, Dept Health, Department of Land and Natural Resource, USGS)
- Apply geochemical indicators:
 - CI/Mg ratio,
 - Silicate and Cation Geothermometers
 - Sulfate/Cl ratio
 - Mixing Analysis
- Identify wells with potential heat alteration as positive indicators in comprehensive Play Fairway Analysis
- Continuously update database for project and through mission of Hawaii Groundwater and Geothermal Resources Center (HGGRC)
- Make data and findings accessible through HGGRC & DOE Geothermal Repository

Execution of Approach: Water Well Chemistry

Issues:

- Hawaii's geothermal resources are "blind"; few deep wells outside of Puna;
- No detailed geothermometers for Hawaii; Iceland studies (e.g. Arnorrson et al.) provide best surrogate;
- Fluid indicators of heat may originate some distance from well; flow paths also not well established.

Much well chemistry data is dated; prior test methods may have reduced

analytical accuracy.

Take Away:

- Compiled groundwater data will facilitate current and future investigation;
- Understanding aquifer capture zones and hydraulic pathways will assist with interpretation of geochemical data.

Map of Hawaii showing location of water wells in yellow.

Execution of Approach: Geostatistical Modeling

Each scaled and processed data type a_i is weighted and combined with other data using a generalized linear model with logistic inverse-link function. For example, the probability of heat at location x is given by the map,

$$\Pr(H|\vec{x}) = \left[1 + \exp\left(-w_{0H} - \sum_{i=1}^{n} w_{iH} a_i(\vec{x})\right)\right]^{-1}.$$

The probability of a resource at a given location is the joint probability of the three main desiderata, which, in the independence approximation useful for point-wise processing of large areas, is equal to the product map:

$$\Pr(H, F, P | \vec{x}) \approx \Pr(H | \vec{x}) \Pr(F | \vec{x}) \Pr(P | \vec{x}).$$

To indicate prospects where more information about fluid, say, would be helpful, we generate a partial product map in areas where fluid data are absent or ambiguous, and similarly for the other two partial products,

$$Pr(H|\vec{x}) Pr(P|\vec{x}).$$

Execution of Approach: Geostatistical Modeling

Execution of Approach: Geostatistical Modeling

Heat & Permeability

Accomplishments, Results and Progress

Technical Accomplishments:

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
1. Search for data	1. Data identified and obtained*	12-31-15 Q1
2. Compile data	2. Data compiled (GIS; Matlab)	3-30-15 Q2
3. Initial modeling	3. Data ranked; modeling initiated	in progress Q3

Cost and Performance Variances:

none

Data Demonstrating Accomplishments:

Accomplishments, Results and Progress

Special recognition ~ *Press!*

January 2015

Creation and launch of website announcing UH's new <u>Hawaii Groundwater and Geothermal Resources Center</u> (HGGRC)

Related Press:

"How hot is your Hawaii? New Geothermal Resources Center" – ThinkTech Hawaii (a television show interview with Nicole Lautze and Jay Fidell)

"UH website makes groundwater research public" - Ka Leo O Hawaii (news article)

"Hawaii: Groundwater and geothermal data compiled for first time" - International Association of Hydrogeologists

"New database a tool in groundwater, geothermal discussions" – West Hawaii Today (news article)

"Hawai'i groundwater and geothermal data compiled for first time" – University of Hawaii at Manoa (press and news release)

Hawaii Public Radio (an affiliate of NPR) interviewed Nicole Lautze regarding launch of HGGRC.

March 2015

Geothermal Exploration Permit application to conduct MT surveys on Hualalai volcano goes before Dept of Land and Natural Resources Board.

Related Press:

"Hualalai geothermal study planned" – <u>Big Island Video News</u> (news article); <u>West Hawaii Today</u> (news article); <u>KITV</u> (news article) and video); <u>Hawaii News Now</u> (news article); <u>The Republic</u> (news article); <u>Geothermal Resources Council</u> (blog entry) <u>Civil Beat</u> (news article)

October 2014

"Aia lā i 'o Pele i Hawai'i: There is Pele in Hawai'l Is Geothermal Energy Appropriate for Hawai'i?" (Geothermal Cafe Summary) – Hawaiian Islands Science via Academia.edu

Future Directions

Next steps:

- Incorporate all datasets in model
- Expand model to entire state
- Refine model and test new statistical method(s)

Milestone or Go/No-Go	Status & Expected Completion Date
4. Review Results, Refine Model	July 2015
5. Develop Final Model(s)	September 2015
6. Identify and Rank Plays for Phase 2	October 2015

Comment on preliminary thoughts regarding Phase 2.

Summary

- Time is ripe for updated geothermal resource assessment in Hawaii.
- Hawaii's Play Fairway project meets GTO's goals to:
 - lower cost of exploration and development by identifying highest probability resource areas;
 - lower the cost of electricity in the state that pays the most for it;
 - accelerate development of undiscovered resources as recent findings suggest resources may exist in previously unrecognized area(s).
- To date, project is on target:
 - Data are obtained and compiled, initial modeling commenced;
 - Current focus is expansion and refinement of model;
 - Successful meeting of all project objectives anticipated at Phase 1 conclusion.

Thank you!