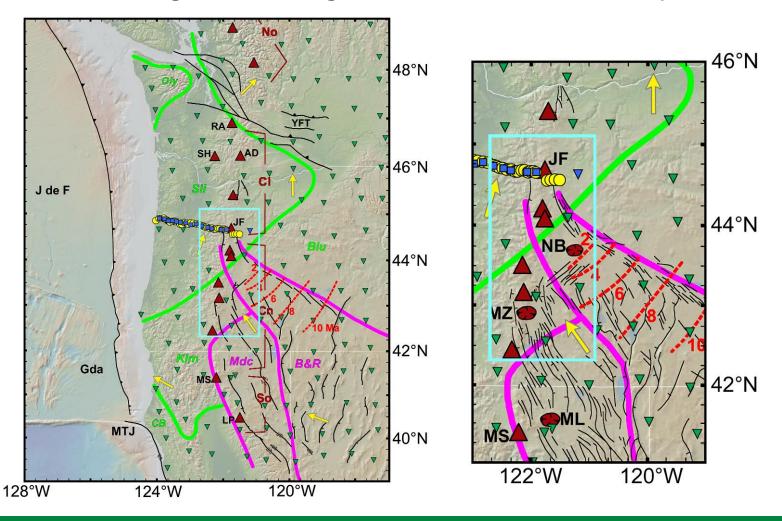


Play Fairway Analysis (PFA): Structurally Controlled Geothermal Systems in the Central Cascades Arc-Backarc Regime, Oregon

Project Officer: Mark Zeigenbein; Total Project Funding: \$537,482

May 12, 2015

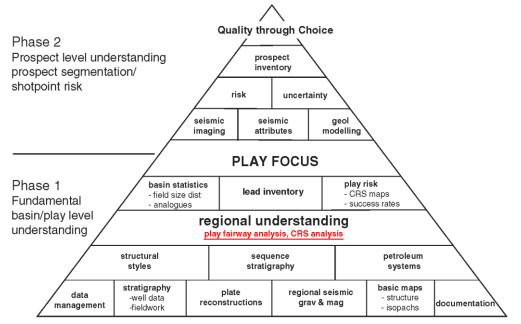
Philip E. Wannamaker, P.I.
University of Utah/EGI
423 Wakara Way, Ste 300
Salt Lake City, UT 84108 U.S.A.
Ph. 801-581-3547
pewanna@egi.utah.edu
Track: Exploration Validation/PFA

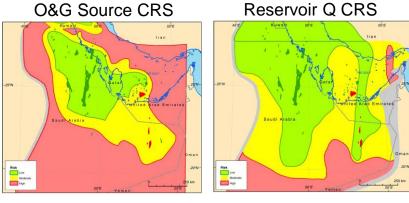

Relevance/Impact of Research

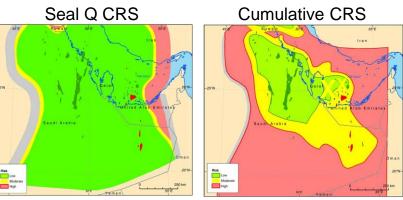
- Principal Objective: Accelerate Near-Term Hydrothermal Growth
 - Lower risks and costs of development and exploration
 - Lower levelized cost of electricity (LCOE) to 6 cents/kWh by 2020
 - Accelerate development of 30 GWe undiscovered hydrothermal resources
 - <u>Challenges/Knowledge Gaps</u>: Develop a Play Fairway Analysis (PFA) model for Central Cascades, Oregon; overcome dense vegetative cover, rain curtain masking, <u>sparse geoscientific data</u>.
 - <u>Cost Impact</u>: Improved geothermal costs through new methodologies, new geothermal play model, economies of scale.
 - <u>Innovative Aspects</u>: Combines MT, structure, geochem; new 3D MT inversion method; new LiDAR-based structure imaging; new subsurface X-T modeling with ToughReact and Geo-T.
 - <u>Meeting GTO goals</u>: Intended to open an underdeveloped U.S. geothermal province; identify new plays and play types.

Scientific/Technical Approach

 <u>Central Cascades Rationale</u>: Superposition of andesitic subduction flux and bimodal rifting tectono-magmatism; extensional stress permeability

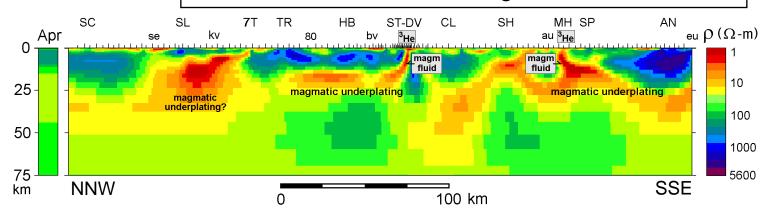

Scientific/Technical Approach

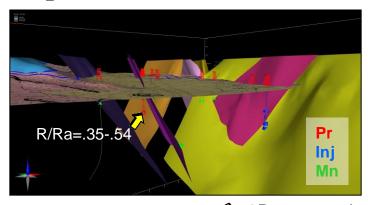

• <u>PFA Approach Summary</u>: Need to identify heat source, access to fluids, pathways to heat up and concentrate fluids, high permeability reservoir, caprock.


 Use MT to image high-T, fluidized upwellings; Use LiDAR and high-res DEM for structural modeling through forest cover; Use Geo-T and ToughReact for

subsurface and fluid X-T state.

Oil & Gas Exploration Process Triangle (A. Fraser, Geol. Soc. London, 2010)



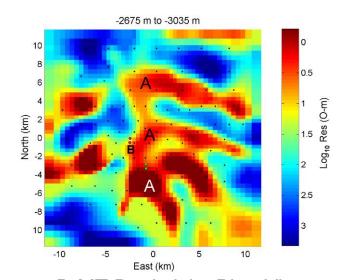

O&G CRS Analogs (Saudi Pen.)

Great Basin Magmatism & McGinness Hills System Motivation for Method Integration in Cascadia

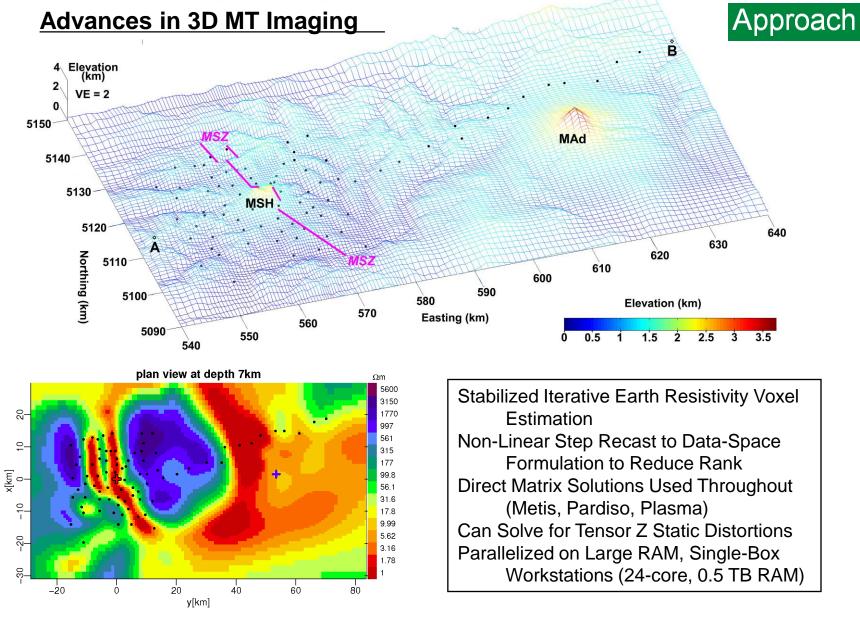
- Structural setting as accommodation zone
- Deep magmatic connection from elevated R/Ra
- CO₂ flux anomaly along ~NW fault zone

Accommodation Zone
Overlapping Opposing
Normal-Fault Systems
-1
-1 km

after J. Faulds

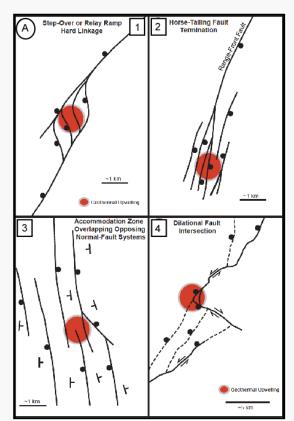


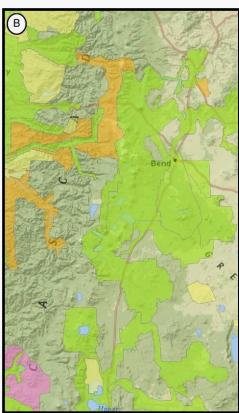
3D structural perspective view from mapping and wells;
 3He R/Ra in production wells

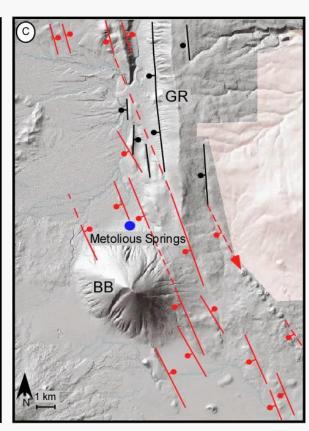

← Purging sample port on well 36-10 for He sampling (L. Owens, Ormat)

U.S. DOE contract DE-EE0005514

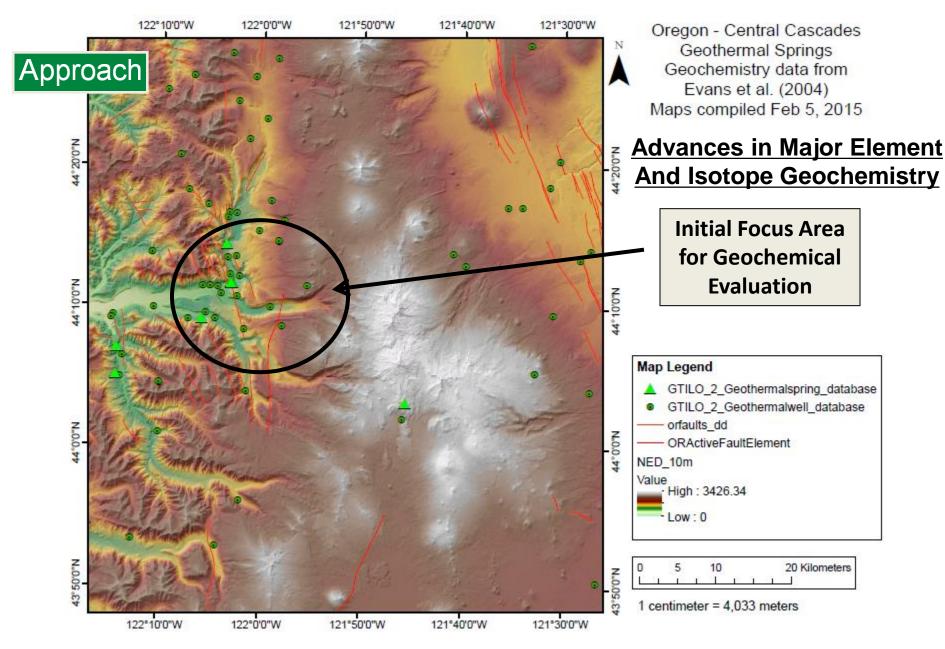
- 3D MT confirms 2D recon
- Connection of prod. to depth
- NW-SE trends at multi-scale


3D MT Resistivity Plan View B is production, A is deep regional


3D MT Inversion using Deformable Edge Finite Elements Mt St Helens Data (Kordy, Wannamaker, et al., 2015, in revis.)


Advances in Structural Geology Analysis

Faulds et al. (2013)


Central Oregon LiDAR Coverage

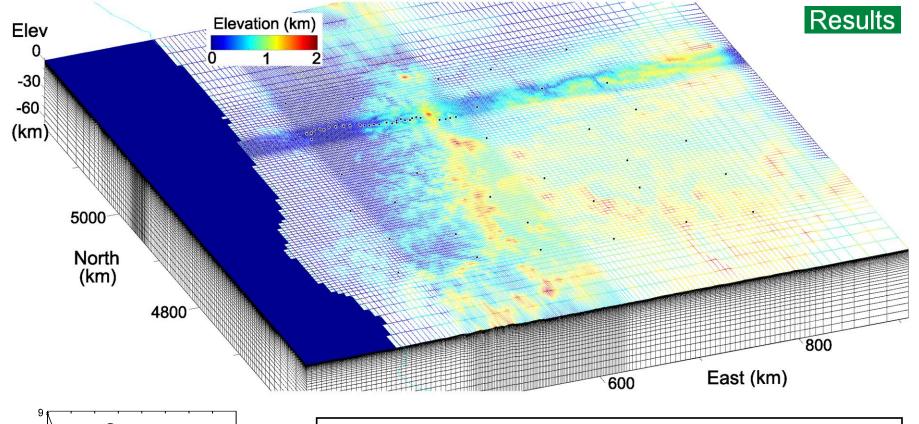
Green Ridge-Black Butte Fault Intersections

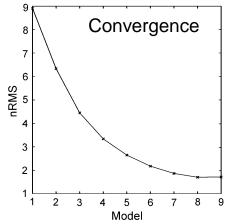
Dilatent Structure Examples in Central Cascades from LiDAR Data

- LiDAR reveals lineaments not perceptible previously
- New coverage (orange) includes north-central Cascades graben

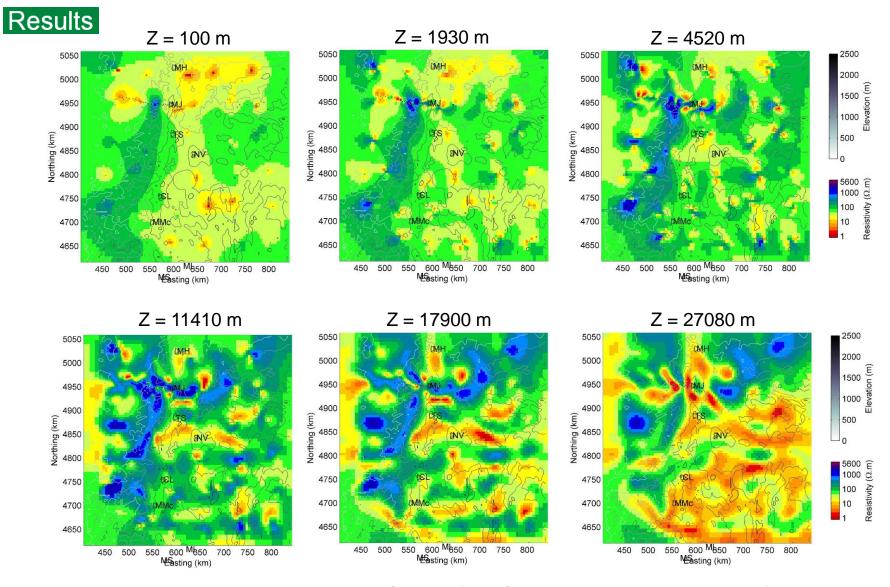
Improve Cascades Geochemical System Understanding Through New Tools Geo-T and ToughReact: Apply First to Data-Rich Three Sisters Region

Accomplishments, Results and Progress

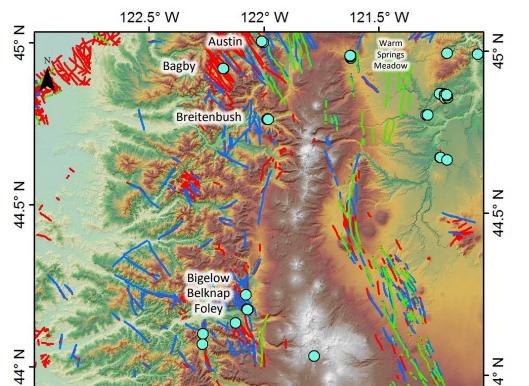



Proposed Milestones at Outset of Project:

			Mileston	e Summary Table						
	Recipient Name:	University of Utah/EGI								
	Project Title:	Structurally Controlled Geothermal Systems in the Central Cascadia Arc-BackArc Regime, Oregon								
Task Number	Task Title or Subtask Title (If Applicable)	Milestone Type (Milestone or Go/No-Go Decision Point)	Milestone Number* (Go/No-Go Decision Point Number)	Milestone Description (Go/No-Go Decision Criteria)	Milestone Verification Process (What, How, Who, Where)	Anticipated Date (Months from Start of the Project)	Anticipated Quarter (Quarters from Start of the Project)			
T1.1	MT data Q/C, inv. code prep	Milestone	M1.1	Readiness for MT inversion	Error limits in accepted bounds, synth. tests OK	3	1			
T1.2	3D Emslab Profile Inversion	Milestone	M1.2	3D Resistivity Mod, Fluid Source Map	nRMS model converg., model pres'n. to group	6	2			
T2.1	Structure & LIDAR Compilation	Milestone	M2.1	Readiness for Dilatency Analysis	Present. of distribution to group, feedback	3	1			
T2.2	Dilatency Analysis	Milestone	M2.2	Permeability Potential	Permeability Potential Map to Group, feedbk	9	3			
T3.1	Fluid Chemistry Compilation	Milestone	M3.1	Readiness for THC Modeling	Present. of distribution to group, feedback	3	1			
T3.2	Fluid Chemistry Modeling	Milestone	M3.2	Isotope Interpret., THC Modeling	Thermal Conditions Map to Group, feedbk	9	3			
T4.1	Integrated Geolog. Model Construction	Milestone	M4.1	Integrated Geolog. Model Construction	Model Presentation to Group, feedback	9	3			
T5.1	Play Risk Integration	Milestone	M5.1	Fairway Map Production	Exchange of Individual Fairway Maps, Exchange of Composites, Feedback	12	4			


- Project is on time and on budget in each of the stated subtasks above.
- 3D MT inversion shows pertinent conductive geothermal upwellings.
- Improved and new structures from LiDAR, Breitenbush/Belknap maps.
- New fluid subsurface T estimates and fluid history modeling.

3D MT Inversion Edge Finite Element Mesh (EMSLAB + Earthscope sites)



- 60 MT stations (28 EMSLAB, 32 Earthscope)
- 31 periods (0.11 to 2560 s)
- Sub Rx: min cell = 1.5 km w, max cell 5 km w
- FE mesh: 145 (n) x 231 (e) x 59 (z) cells (10 air)
- Inversion domain: $133 \times 214 \times 42 = 1,170,134$ parameters
- Error floors: 3.5% max{ |Zij| ; |Zxy-Zyx|/2 }, 0.03 tipper
- 33 ohm-m starting model, nRMS = 1.7 after 9 iters
- 31 hours/iter on 24-core w/s with 0.5 TB RAM

3D MT Inversion Plan Slices (EMSLAB + Earthscope sites)

- <2 km dominated by sediments and shallow alteration
- 'Butterfly' conductive upwelling > 3 km around Mt Jeff incl. Breitenbush, Kahneeta
- Large-scale, deep E-W conductive trends intersect arc volcanoes

Paulina

0

Geothermal_Springs_GTILO
DOGAMI Active_Faults

USGS_Faults_All_2005

121.5° W

DOGAMI_Faults_All_2009

43.5° N

Wall Creek

Umpqua

122.5° W

McCredie

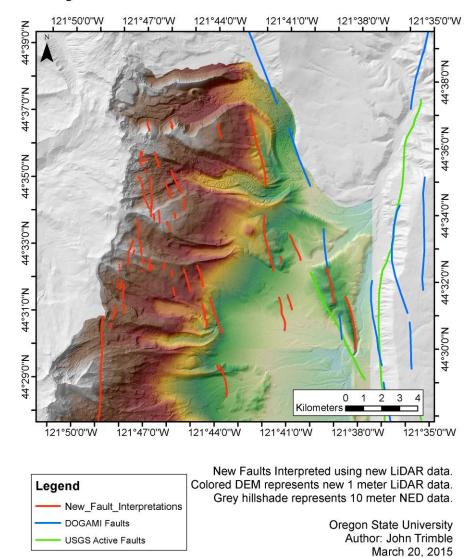
Kitson

Summit Lake

NED 10m

High: 3426.34

122° W



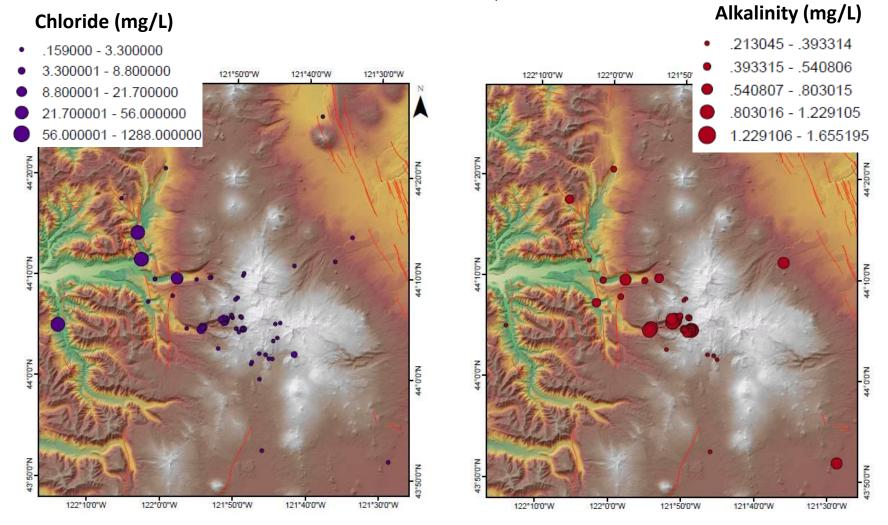
Western and High Cascades (WC, HC) **Hot Springs and Faults**, Central Oregon

- 1. The Mt Jefferson region marks north end of prominent graben.
- Hot springs are concentrated in the central and eastern parts of the WC.
- 3. Breitenbush lies in a nexus of N-S and NW-SE trending faults.
- NNW-trending faults project from WC (Breitenbush, Austin) across HC toward Sisters fault zone.
- 5. Newly recognized, young NNWtrending faults potentially link WC and Sisters faults across HC.
- 6. WC-HC structural boundary in McKenzie River area (Foley, Belknap) includes N- and NW-trending faults; cross-cutting ambiguous.

Results

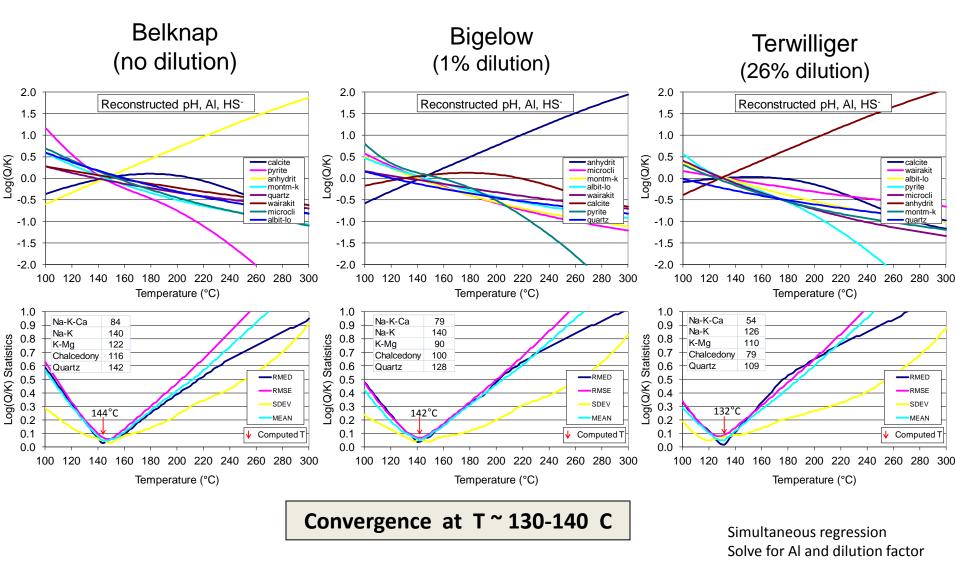
Young Faults in the Cascades Southeast of Mt Jefferson

>20 new scarp segments identified southeast of Mt Jefferson. Identification not possible in prior 10 m NED data.


Faults in the Belknap Hotspring Area 122.1° W 122.05° W 122° W 44.25° N 44.25° N **Bigelow** 44.2° N Belknap 122.1° W 122.05° W 122° W

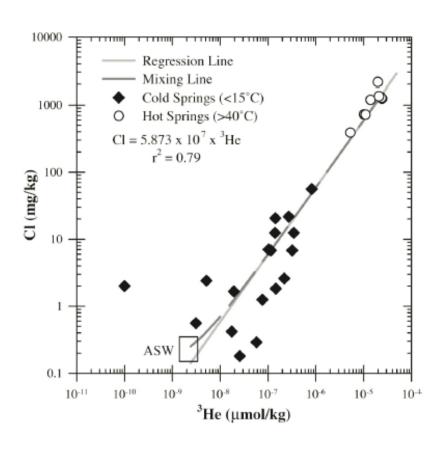
LiDAR (black box) reveals unrecognized faults (yellow).

Central Cascades Bi-Modal Fluid Chemistry Three Sisters Region (Thermal and Cold Springs)


Data: Evans et al., 2004

Chloride content and alkalinity tend to increase westward past Three Sisters

Three Sisters Region: Thermal Springs (high chloride) **Multi-Component Geothermometry (Geo-T)**



Geo-T: http://esd.lbl.gov/research/projects/geot/

HS set with pyrite equilibrium

Helium – Chloride Co-Variations: Oregon Cascade Thermal Springs and Three Sisters Area Cold springs

He and Cl addition ⁴He addition 1000 Mixing Line Cl (mg/kg) Cold Springs (<15°C) Hot Springs (>40°C) ASW 0.1 3He/4He

Strong correlation between concentration of magmatic ³He and Chloride

Lack of similar correlation with ³He/⁴He ratios suggests Cl-rich fluids, which contain more ⁴He, are more evolved or passed through different lithology

Future Directions

			Milestone	Summary Table						
	Recipient Name:	University of Utah/EGI								
	Project Title:	Structurally Controlled Geothermal Systems in the Central Cascadia Arc-BackArc Regime, Oregon								
Task Number	Task Title or Subtask Title (If Applicable)	Milestone Type (Milestone or Go/No-Go Decision Point)	Milestone Number* (Go/No-Go Decision Point Number)	Milestone Description (Go/No-Go Decision Criteria)	Milestone Verification Process (What, How, Who, Where)	Anticipated Date (Months from Start of the Project)	Anticipated Quarter (Quarters from Start of the Project)			
T1.1	MT data Q/C, inv. code prep	Milestone	M1.1	Readiness for MT inversion	Error limits in accepted bounds, synth. tests OK	3	1			
T1.2	3D Emslab Profile Inversion	Milestone	M1.2	3D Resistivity Mod, Fluid Source Map	nRMS model converg., model pres'n. to group	6	2			
T2.1	Structure & LIDAR Compilation	Milestone	M2.1	Readiness for Dilatency Analysis	Present. of distribution to group, feedback	3	1			
T2.2	Dilatency Analysis	Milestone	M2.2	Permeability Potential	Permeability Potential Map to Group, feedbk	9	3			
T3.1	Fluid Chemistry Compilation	Milestone	M3.1	Readiness for THC Modeling	Present. of distribution to group, feedback	3	1			
T3.2	Fluid Chemistry Modeling	Milestone	M3.2	Isotope Interpret., THC Modeling	Thermal Conditions Map to Group, feedbk	9	3			
T4.1	Integrated Geolog. Model Construction	Milestone	M4.1	Integrated Geolog. Model Construction	Model Presentation to Group, feedback	9	3			
T5.1	Play Risk Integration	Milestone	M5.1	Fairway Map Production	Exchange of Individual Fairway Maps, Exchange of Composites, Feedback	12	4			

- Our strategy is intended to provide focus for followup exploration and development in this area
 of possible high geothermal potential. Table presents project year plan going forward.
- Future activities for FY2015:
 - Complete cataloging of possible geothermally-relevant low-resistivity upwellings.
 - ID of new faulting esp. to south in area, dilatency analysis for permeability potential.
 - Spring chemistry modeling esp. to south in area, interp. of ultimate fluid sources.
 - Derivation of characteristic geothermal model(s) for Central Cascadia.
 - Presentation of possible play areas for followup assessment.
 - Identification of data needs and next steps in this region of sparse knowledge.

Summary

- Central Cascades should have high geothermal potential given confluence of subduction arc and extensional magmatism.
- Integration of MT resistivity, structural analysis and fluid geochemistry constitutes methodology for prioritizing exploration and play ranking.
- Low-resistivity upwellings resolved using new MT inversion capability may point toward shallower high temperatures and fluids.
- New LiDAR and high-res DEM data are allowing identification of hidden recent faulting, NW cross-arc trends, and structural setting for dilatency assessment.
- State-of-the-art geochemical modeling allows equilibrium or reactionbased subsurface fluid temperature estimates with rigor beyond standard geothermometry.
- PFA will move southward from Mt Jefferson-Three Sisters area as project progresses.
- Central Cascades suffers from data sparseness which needs to be addressed going forward.