

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

May 11-14, 2015

Principal Investigator: Greg Newman, Michael Fehler Organizations: LBL & MIT

Track Name: Exploration Validation / Play Fairway Analysis

Project Participants and Collaborators:

Lawrence Berkeley National Laboratory
Massachusetts Institute of Technology
Iceland GeoSurvey (ÍSOR);
Reykjavík University;
Uppsala University;
TerraGen (Operator of the Coso Field);
Icelandic Power Companies

Funded as comprehensive Icelandic/USA cooperative project under the International Partnership for Geothermal Technology (IPGT) agreement

Relevance/Impact of Research

Project objectives

- Develop improved geophysical imaging methods
 - characterizing subsurface structure
 - identify fluid locations
 - characterize fractures
- Obtain the maximum amount of information from seismic and electromagnetic data:
 - 1) Seek improvements to baseline imaging methods
 - 2) Developing new joint inversion methodologies
- Improve methods by application to real data from four systems
- Demonstrate applicability of methods

Scientific/Technical Approach

- Multi-steps for combined analysis
 - Individual analysis of geophysical datasets for 4 sites
 - Integrated interpretation
 - Iterative analysis using output of one method as input to another
 - MT <-> Seismic
 - Joint Imaging for common structure
- Analysis methods used
 - MT inversions for resistivity
 - Double-difference tomography (DDT) using microearthquake sources
 - Fully coupled elastic inversion

Scientific/Technical Approach

Four Regions Being Studied

- Krysuvik & Hengill Reykjanes area, Iceland
 - Several producing geothermal fields
 - Collect new MEQ data, leverage with existing MEQ data from ISOR Network & MT data
- Krafla volcano, Iceland
 - Producing Geothermal field
 - First Iceland Deep Drilling Project (IDDP) well
 - Use existing MEQ and MT datasets
- Coso Hot Springs, USA
 - Producing geothermal field
 - Analyze existing MEQ and MT data

Accomplishments, Results & Progress

Coso

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Early in FY12	Coso Joint Seismic-EM Model	May FY12
Fall FY14	Coso Full Tensor MT Analysis	Sept FY14

Standard MT Inversion Workflow Problems and Issues

8 | US DOE Geothermal Office eere.energy.gov

3-D Modeling of Full-tensor MT data

EMGeo Inversion Algorithm

Solve Maxwell's equations in 3-D using non-linear conjugate gradient method. Finite-difference methods used to predict data. Implemented in parallel, on Hopper Cray XT4 at the National Energy Research Scientific Computing Center (NERSC).

$$\varphi = \sum_{n=1}^{2N} \left[(Z_n^{\text{obs}} - Z_n) / \varepsilon_n \right]^2 + \lambda \mathbf{m}^{\text{T}} \mathbf{W}^{\text{T}} \mathbf{W} \mathbf{m}$$

Newman and Alumbaugh, 2000

9 | US DOE Geothermal Office

3-D Full-tensor MT Modeling

Inversion metadata
Sequenced workflow
10% error floors
~4000 processors
30 hours runtime
218 iterations
RMS=3.5

Seismic reflection interpretation overlayed from Unruh et al., 2008.

Mud loss locations overlayed from Newman et al., 2008.

3-D Full-tensor MT Modeling

TT US DOE Geothermal Office

3-D Full Tensor MT Modeling

12 | US DOE Geothermal Office eere.energy.gov

3-D Full Tensor MT Modeling much better correlations with seismicity

Krysuvik – Reykjanes

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed	
March FY12	Krysuvik Resistivity Model	Spring FY12	
March FY13	Continuously Operation MEQ Network – Reykjanes Area	Fall FY13	
March FY14	Krysuvik Joint MEQ-MT Analysis	Fall FY14	

Joint MEQ-MT Analysis Krysuvik

Hengill-Reykines Network

EW line shown

Double Difference Tomography Without Resistivity Constraint

P-wave Velocity Through Reference

Vertical Cross Section Through LBL Resistivity Model

- Study Krysuvik Region
- Target for Geothermal Energy Development
- Network collaboration of Reykjavik University, Uppsala University and MIT
- Active seismic swarm
- Active uplift measured with GPS and InSAR

Krysuvik – Joint Analysis

Double Difference Tomography Without Resistivity Constraint

P-wave Velocity Through Reference

Independent Inversions

- Weak correlation between models
- High Resistivity Zone and Low Veloctiv Zones centered a 5 km depth are similar
- Seismic inversion done with smaller grid spacing than would normally be done
 - Attempt to get grid scales between inversions more similar
 - This leads to features in seismic model that are poorly constrained
- Earthquakes seem to terminate at top of low velocity zone / high resistivity zone

Krysuvik – Joint Analysis

Vertical Cross Section Through LBL Resistivity Model

Double Difference Tomography With Resistivity Constraint

largemodel_ttw5_cg.3 P-wave Velocity Through Reference

Seismic Model Constrained by Resistivity Model

- Good correlation between models
- Very little change in RMS misfit of seismic data (1 -2%)
 - Constrained seismic model is one of many models that fit data well
 - Resistivity constraint helps provide better seismic model
- High Resistivity Zone / Low Velocity Zones centered a 5 km depth are more similar
 - Many poorly constrained portions of seismic model now lack structure
 - Desired outcome
- Earthquakes do terminate at top of low velocity zone / high resistivity zone

17 | US DOE Geothermal Office

Krysuvik – Joint Analysis

Interpretation of Low Velocity/ High Resistivity Zone

Partial melting	Supercritical fluid	Ductile Material	
Low Vp, Vs	Low Vp, Vs	Low Vp, Vs	
High Vp/Vs ratio	Low Vp/Vs ratio	?	
Low resistivity	High resistivity	High Resistivity	
Seismicity Terminates	No Seismicity Termination	Seismicity Terminates	

Items in black are features in model that are consistent with the interpretation Items in red are required features that are not in the model

Krafla

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Mid FY13	Krafla Model Appraisal (3D resistivity cube)	October FY13
End of FY13	Krafla Joint MEQ-MT Analysis (Final results)	December FY13

Krafla Resisitivty Cube Appraisal Three Codes - Three Images

Geothermal zones

The structures of the zones coincide
Resistive cores
Super Critical Fluids – at IDDP-well
Deep conductive body NW of IDDP-well
Interpreted as plausable magmatic zone

Dissimilarities

Near surface-dependent initial model Model edges and data coverage

ISOR - WSINV3DMT LBL - EMGed

UBC - MT3Dinv

Joint MT-MEQ Analysis - Krafla

Joint MT-MEQ Analysis – Krafla Model Appraisal

Synthetic Reconstruction

Assessment

- The seismic model is over-parameterised
- Models not dramatically different with/without coupling to the MT-model
- The cross-gradient smooth's the seismic velocity model ... but the model fits the data equally well
- Velocity models poorly resolved below 2 km depth

LBL

Hengill - Reykjanes

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
March FY13	Hengill 3D Resistivity Model Appraisal: three imaging codes	Spring FY14
March FY13	Continuously Operation MEQ Network – Reykjanes Area	Fall FY13
March FY14	MEQ Velocity Analysis	In progress (U. Uppsala)
Sept FY14	Joint MEQ-MT Analysis	Pending

Future Directions

- Funding for project formally ended in FY14
- MEQ analysis still proceeding with Hengill (U. Uppsala)
- Joint MT-MEQ analysis for Hengill pending
- Resistivity cube appraisal
 - Consider application to Coso and Krysuvik with independent modeling codes
- Full tensor MT analysis & workflow
 - Consider application to Krafla, Krysuvik & Hengill data sets

Summary

- Correctly-formulated joint inversion has the capability to combine differing datasets to maximize the information obtained about geothermal targets
 - Useful for geothermal exploration, site characterization, and reservoir assessment
- Clear improvements in use of MT for geothermal
 - Full Tensor Analysis & Improved Inversion Workflows
 - Model Appraisal using Independent Modeling Algorithms
- Collected new data in Iceland and analyzed existing/new data from 4 geothermal areas using MT, Seismic, and Joint analysis methods
 - Individual and joint analysis provides new insight into structure of geothermal fields

Project Management

_						
ш	im		1.0	1		=
		CI	ш	- 11	$\overline{}$	_

Planned	Planned	Actual	Current
Start Date	End Date	Start Date	End Date
5/15/2010	9/30/2014	5/15/2010	9/30/2014

Budget:

DOE Share: \$3,205,226

Funding received in FY09: \$0

Funding for FY10: \$750,226 Funding for FY11: \$175,000*

Funding for FY12: \$830,000

Funding for FY13: \$725,000

Funding for FY14: \$725,000

ISOR and RU funding from GEORG Program (GEOthermal Research Group) & Swedish Science Foundation

Federal Share	Cost Share	Planned Expenses to Date	Actual Expenses to Date	Value of Work Completed to Date	Funding needed to Complete Work
2/3	1/3	\$3,205,226 (DOE)	\$3,205,226 (DOE)	\$4,807,839 (DOE+Cost Share)	\$0 (DOE)