

Li Lithium 6.941

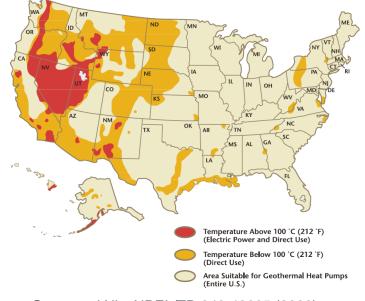
Manganese 54.938

Selective Recovery of Metals From Geothermal Brines

Project Officer: Holly Thomas Total Project Funding: \$500,000 May 12, 2015

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Susanna Ventura SRI International


Track : Low Temperature; Metal Recovery

Relevance/Impact of Research

- Geothermal fluids have a complex chemical composition determined by the composition of rocks, and the temperature and pressure experienced by the fluid and rocks
- Alkaline and alkaline earth metals such as Na⁺, K⁺, Ca²⁺ and Mg²⁺ are usually present in very high concentrations posing a challenge to the separation of other metals, often requiring high volume of solvents and multiple steps
- Selective high capacity sorbents will separate metal more efficiently

Brine Metal	mg/Kg
Li	200-400
Na	47,000-65,000
К	12,400-16,700
Са	21,500 – 27,400
Mn	1280-1560
Zn	280-1160
Pb	70-240

Geothermal fluid composition in Imperial , Salton Sea, and Brawley (D. Gallup , 1998)

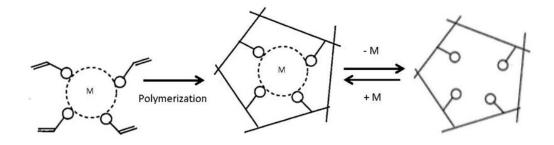
U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

Green and Nix, NREL/TP-840-40665 (2006)


Relevance/Impact of Research

Energy Efficiency & Renewable Energy

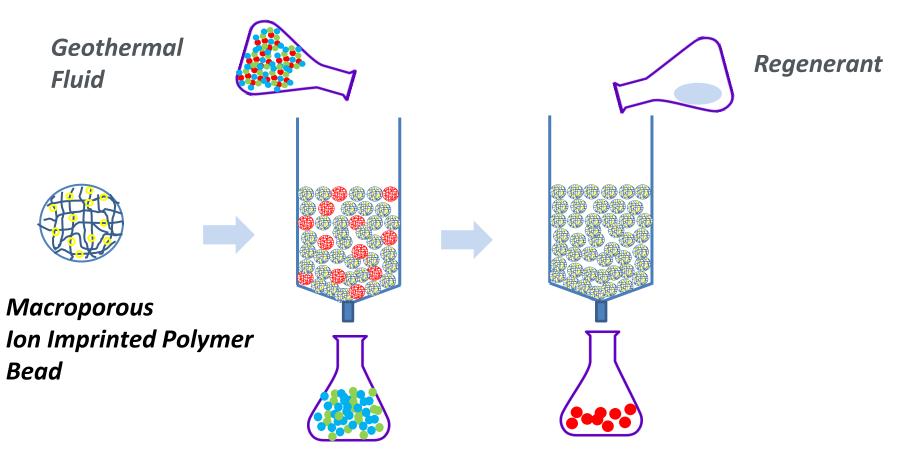
Project Objective

 Develop high capacity reusable low-cost sorbents based on *metal ion imprinted polymers* for the selective solid phase extraction of lithium and manganese from medium-to-low temperature geothermal fluids

• Selective high capacity sorbents will extract metals more efficiently and lower the cost of production of lithium and manganese compounds from thermal fluids. This is expected promote geothermal power production - especially for low-to-medium temperature geothermal fluids - by creating an *additional value stream* from metal recovery

Scientific/Technical Approach

- Develop ion imprinted polymer sorbents with
 - High binding capacity
 - Selectivity
 - Fast binding kinetics
 - Ease of regeneration
 - Good chemical and temperature stability up to 100°C
- Preparation of Ion Imprinted Polymers
 - Nature of polymer and ligands
 - Degree of crosslinking
 - Methods of forming macroporous polymer beads



(1) Prepare polymerizable ligands with good affinity for lithium and manganese

- (2) Prepare macroporous imprinted polymer beads by crosslinking polymerization
- (3) Test sorbents for their metal binding capacity and selectivity in *batch process* at 45-100°C
- (4) Test lithium and manganese separation efficiency in synthetic and real brines
- (5) Evaluate sorbents in *flow-through system*

Solid Phase Extraction

ENERGY Energy Efficiency & Renewable Energy

Metal Ion Selective Sorption

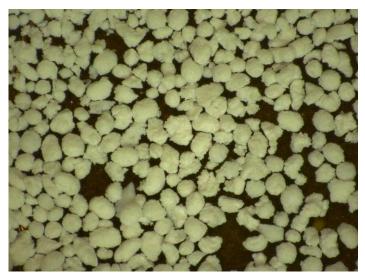
Metal Compound Recovery

Ion Imprinted Polymer Beads

- Suspension polymerization is being used for the preparation of ion imprinted porous polymer beads
- The polymer beads are treated with mild acidic solution to leach out the template metal (lithium or manganese)
- The amount of metal in the leachate is determined by ICP-OES
- By determining the amount of metal leached out from the polymer, metal binding capacities up to 0.5 meq/g were observed

Energy Efficiency &

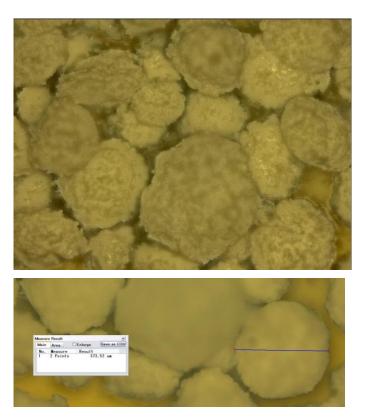
Renewable Energy


U.S. DEPARTMENT OF

ENERGY

Ion Imprinted Polymer Beads with Variable Size and Porosity

U.S. DEPARTMENT OF


Energy Efficiency & Renewable Energy

Li Imprinted Polymer Beads

Mn Imprinted Polymer Beads

Li Imprinted Polymer Beads - magnification

Energy Efficiency & Renewable Energy

- Particle size varies depending on the nature of monomers and polymerization conditions
 - 600-1000 micron
 - 200-400 micron
- Imprinted polymer beads with high surface area were prepared
 - Surface areas of more than 400 m²/g were determined by BET analysis using nitrogen

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Prepare initial batch of Li imprinted polymer	Polymer isolated and characterized by FT-IR analysis and lithium content	12/31/14
Demonstrate Li imprinted polymer beads with ~ diameter of 250-500 micron and surface area of 100 m ² /g or more	Polymer beads were prepared and shown to have 200-400 µm diameter with optical microscope. Surface area of 430 m ² /g was determined by BET analysis	3/30/15
Demonstrate Mn imprinted polymer beads with diameter of about 250- 500 micron and surface area of 100 m ² /g or more	Polymer beads were prepared and characterized with optical microscope. The beads diameter is~600-1000 µm.	In progress

Future Directions

ENERGY Energy Efficiency & Renewable Energy

- Evaluate the sorbents metal uptake for different concentrations of lithium and manganese under batch equilibrium conditions
 - at variable temperature (up to 100°C) and pH
- Evaluate metal binding selectivities in binary mixtures and synthetic/real brines under batch equilibrium conditions
- Evaluate metal uptake in flow-through system
- Evaluate sorbent regeneration and perform durability test

Milestone or Go/No-Go	Status & Expected Completion Date
Sorbent binding capacity of 0.4meq/g for Li and Mn at 45°C (batch test)	In progress. 6/30/2015
Li and Mn imprinted polymers with separation efficiency of 90% using brine at 40°C	No/no-go decision point 9/30/2015
Scale-up preparation of Li and Mn imprinted polymers	12/31/2015
Li and Mn imprinted polymer with capacity of 0.5 eq/L at 75-100°C (flow-through tests)	12/31/2015
Li imprinted polymer with capacity of 4g/L and separation efficiency of 95%; Mn-imprinted polymer with capacity of 0.5 meq/L and separation efficiency of 90%. Operation temperature of 45-100C.	3/30/16

ENERGY Energy Efficiency & Renewable Energy

- We have prepared polymerizable ligands for binding lithium and manganese ions, and imprinted polymers by polymerization crosslinking
- We have demonstrated the feasibility of preparing lithium and manganese imprinted polymers in the form of porous high surface area beads with diameter <u>></u> 200 micron for use in column separation
- Imprinted polymers with available metal binding capacities up to 0.5 meq/g were prepared
- The polymer metal uptake and selectivities as a function of pH and temperature are currently being evaluated