

Current geometries

Proposed geometries

Sabau A.S., Klett J., Dehoff R., Bejan A. (Duke U.), Jones J., Nejad A. (UTK), Polsky Y., Gruszkiewicz M., and Mines G. (INL)

Freeform Heat Exchangers for Binary Geothermal Power Plants

Project Officer: Tim Reinhardt

Total Project Funding: \$190K and \$280K (FY14, FY15)

May 12, 2015

Adrian S. Sabau
Oak Ridge National Laboratory

Low Temperature

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Relevance/Impact of Research

- Objective: Develop compact & efficient heat exchangers for geothermal power plants, tailored for specific working fluids.
- Challenges and barriers addressed: Significant difficulties in reducing the cost of electricity for ORC binary power plants operating with brine at less than 150°C
- Impact on cost, performance, applications, and markets
 - Attaining an overall heat transfer coefficient for the new heat exchanger of 140 W/m²K at the same cost (2X compared with current baseline).
 - The decrease in the footprint and associated costs of heat exchangers would lower the geothermal LCOE.
- Impact to GTO goals
 - Goal 9 developing low-cost, high-efficiency energy conversion technologies for EGS
 - Barrier N (Energy conversion at low temperature)
 - 3 GWe of installed low-temperature geothermal capacity by 2020
- Innovative aspects of the project
 - Involve novel fabrication routes, such as Additive Manufacturing, for creating novel nearnet shape structures,
 - New designs would have optimum (and different) geometry features according in different regions (liquid-to-liquid, two-phase-to-liquid, and gas-to-liquid),
 - Assess the use of carbon-foam for geothermal heat exchangers.

Scientific/Technical Approach

Task	Description
1) Assess the applicability of AM and carbon foam for heat exchangers used in geothermal industry.	The material and fabrication costs will also be obtained.
2) Propose novel geometry for heat transfer passages and overall heat exchanger architectures.	The envisioned evaporator designs include three sections, each with its own geometry features, according to the working fluid state: liquid-to-liquid, two-phase-to-liquid, and gas-to-liquid.
3) Conduct Computational Fluid Dynamics (CFD).	To assess the performance of heat exchangers, friction factors (pumping power), thermal resistance (heat transfer coefficients, or Nusselt number), Colburn j factor
4) Fabricate small heat exchanger components using AM and/or carbon foam facilities at ORNL.	Small scale prototypes will be fabricated to establish the proof of principle for the fabrication of compact heat exchanger components.
5) Fabricate test loop for geothermal-relevant conditions.	Design and built a test loop that will enable the testing of heat exchangers (1-5kW) under conditions and refrigerants relevant geothermal power plants.
6) Test prototype components	R134a and R245fa refrigerants will be used in tests.

Scientific/Technical Approach: Specific technical challenges

Key Issues	Challenge
Design new geometries & architectures	Design space too large
Additive Manufacturing applicability	How to apply to large components?
Two-phase CFD	Accurate simulations
Prototype heat exchanger	Fabricate 1-10 kW heat exchanger
Carbon foam	Corrosion with Al and steel
ORC	Refrigerant selection
Two-phase flows	How to lower pressure drop?
Brine flow	Silica precipitation

Scientific/Technical Approach

Item/Feature	Proposed Approach
Design new geometries & architectures	 Identifying optimum non-circular cross-sections based on scale analysis and CFD simulations Use constructal theory for systematic multi-scale design Use multi-scale design: developing flow in smallest level
Additive Manufacturing	 Fabricate entire small heat exchangers (1-10kW heat load). Fabricate manifolds and other intricate-shape subcomponents for large HX.
Two-phase CFD	Work with CD-Adapco, Inc. to implement accurate thermophysical properties
Baseline heat exchanger	Work with ElectraTherm, Inc. to identify a 1-10kW baseline heat exchanger.
Efficiency of binary power plants	Supercritical two-phase (R134a) and ORC (R245fa)

Accomplishments, Results and Progress

Туре	Original Planned Milestone (OPM), or Technical Accomplishment (TA)	Actual Milestone/Technical Accomplishment	Date Completed
TA	Working fluid selection	R134a - Supercritical two-phase R245fa – for typical ORC	11/1/2014
TA	Proof-of-principle of using Additive Manufacturing (AM) to fabricate new heat exchanger architectures.	Fabricate a new heat exchanger based on a bifurcating flow concept.	6/10/2014
TA	CFD on sub-model heat exchanger	Preliminary data for carbon- foam Ti heat exchangers	8/18/2014
ОРМ	Identify two new multi-scale architectures for the evaporator, including geometries for internal passages	 Identified staggered triangular-pipe flow Square flow cross-section more performant than circular cross-section flow 	2/31/2015
TA	Identify new flow path geometries	Investigate triangular and square cross-section pipes	ongoing

Accomplishments, Results and Progress: Identify two refrigerants

Refrigerant	Cycle	Advantage	Disadvantage
R134a	Supercritical two-phase	High brine effectiveness	High pressure, more expensive to test
R245fa	Rankine subcritical	Lower pressure, easier to test than R134a	Lower brine effectiveness

Accomplishments, Results and Progress: bifurcating cell enabled a low pressure drop within the two-phase region

The CFD analysis revealed needed areas of improvement such as reducing/eliminating recirculating cells and stagnation areas.

Accomplishments, Results and Progress: Preliminary data for carbon-foam Ti heat exchangers

Carbon-

foam-Ti

plate

Configuratio n	Q _h [W]	UA [W/K]	A [m²]	HX Eff	U [W/m².K]	NTU
Bifurcating*	1,425	46	0.25	73.5	294	0.26
CF-Ti (plate)	1,841	64.9	0.018	0.336	3,650	0.47

- **Highly ordered graphitic** ligaments:
 - Graphite-like properties
 - 30% more thermally conductive than AI, at 1/4h the weight
 - λ approx. 240 W/mK

Accomplishments, Results and Progress: A heat exchanger was developed based on triangular-cross-section pipes

Staggered arrangement of brine/refrigerant flows increases the heat exchanger effectiveness.

Triangular-cross-sectional pipes, arranged in an hexagonal packing, allowing for:

- large surface area for heat exchange,
- smallest thermal resistance due to thin walls between the two flow streams, and
- minimal metal use.

37.140

59.840

82.539

105.24

127.94

150.64

Accomplishments, Results and Progress: Investigate non-circular cross-sections (Duke U.)

 $\begin{array}{c|cccc}
\dot{m}_1 & Plenum or \\
manifolding? \\
\hline
 & & & & & \\
\hline$

CFD simulations and scale analysis conducted at Duke University (prof. Bejan) indicate that pipes of square cross-sections, which are embedded in the solid, would be more efficient than circular pipes.

CFD simulations and scale analysis will be conducted at Duke University (prof. Bejan) for triangular cross-sections.

Accomplishments, Results and Progress: Automatic generation of heat exchangers architectures

Automatic generation of HX CAD and performance:

- Excel spreadsheet for evaluating laminar flow performance, and
- 2. Matlab code for automatically generating CAD data.
- Automatic generation of CAD files in Cubit.

Accomplishments, Results and Progress: Automatic generation of heat exchangers architectures

Optimization criteria identified:

- 1. Surface area per unit volume
- 2. Mass of alloy
- 3. Pressure drop
- 4. U*A

Examples of triscale HX design
(inlet plenum
removed for
clarity) by
employing
developing flow at
smallest level

Enhanced heat transfer in the entrance region.

Future Directions

Milestone or Go/No-Go	Status & Expected Completion Date
Subcomponent fabrication/Complete the fabrication of two subcomponents using AM	On schedule for 6/30/2015
Complete building of test loop	On schedule for 7/15/2015
**Evaporator heat exchanger design	*9/30/2015
Demonstrate experimentally an increase of 100% in the overall heat transfer coefficient of the new heat exchanger as compared to the current baseline of 70 W/m ² K at the same cost.	9/30/2016

** <u>Go/No-Go</u> 2015 decision criteria: Independent confirmation that new design can be experimentally compared to conventional design to compare overall heat transfer coefficient ***<u>Go/No-Go</u> 2015 description: Complete a detailed design of an AM/carbon foam evaporator that can be compared to a conventional shell and tube or plate heat exchanger used in geothermal applications. Heat exchangers will be scaled down versions (1-5 kW).

Deployment:

- Provide technical data on heat exchangers to ElectraTherm Inc. and Koppers Inc. to identify pathways for deployment.
- Identify other collaborators from industry.

Future Directions: Remaining technical challenges

Remaining technical challenges	Pathways to overcame remaining technical challenges
Design space too large for new geometries & architectures	 Work with industrial partners to identify areas of development Systematic design based on optimization criteria Automatic generation of evaporator design
Prototype heat exchanger	Fabricate 1-10 kW heat exchanger
Silica precipitation	 Identify regions in the evaporator prone to silica precipitation near the brine exit area, Formulate geometry requirements to minimize silica precipitation Identify flow rate effect on silica precipitation
Cost	Consider fabrication and materials cost at the design phase

Mandatory Summary Slide

- Additive manufacturing can be used to fabricate: **
 - small evaporators for customized applications manifolds, and
 - intricate-shape sub-components for large evaporators
- Carbon foam has limited use for the evaporator in binary geothermal plants due to the combined cost of the foam and Ti,
- Management of silica precipitation is difficult to consider at the design phase,
- A systematic approach for evaporator design, involving carefully selected optimization criteria, was developed,
- Targeted CFD modeling of sub-scale features are important,
- Performance evaluation using existent correlations for laminar (and turbulent flow, if available) is crucial for HX design screening in the early stages of development.

