

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Single Step Manufacturing of Low Catalyst Loading Electrolyzer MEAs

Award #: DE-SC0009213

Project Team: Proton OnSite (Prime)

Partner: University of Connecticut (Subcontractor)

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C.
May 28-29, 2015

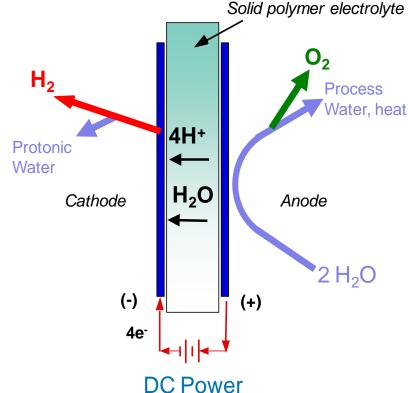
This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Overview

Pro	oject Management	Total Project Budget					
P. I. Name	Dr. Katherine Ayers	DOE Investment	\$1,150,000				
Presenter		Cost Share	\$0				
Organization	Proton OnSite	Project Total	\$1,150,000				

Project Start: 15 Nov 2012 (PH I)
Project End: 27 July 2016 (PH II)

ID	Task Name		Quarter	4th Qu	arter	1st (Quarter		2nd Q	uarter		3rd Q	uarter		4th Qu	uarter	1	1st Qu	arter		2nd Qı	uarter	3rd	Quarter
		Jul	Aug Sep	Oct	Nov Dec	Jan	Feb N	/lar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov E	ec	Jan	Feb	Mar	Apr	May Ju	n Ju	l Aug
1	Phase II Schedule	9						T									Ħ							—
2	1.0 Cathode Development					$\overline{}$		♥│																
3	1.1 Formulation Refinement			-)																
4	1.2 Electrode Configuration					_																		
5	5 2.0 Anode Development		<u> </u>																					
6	2.1 Catalyst Analysis																							
7	2.2 Catalyst Composition and Electrode Formulation																							
8	8 2.3 Support Development																							
9 3.0 Alternative Seal Design						7																		
10	4.0 Electrode Fabrication and Stack Integration																						7	
11	5.0 RSDT Scale-up and Conceptual Design for Industrial Scale													<u></u>			=			_			~	
12	5.1 Pilot Equipment Design, Build, and Test																							
13	5.2 Cost Analysis																				(
14	6.0 Stack Scale-up and Verification																			Ţ			<u> </u>	
15	7.0 Program Management	0																					_	


Project Rationale

 Water electrolysis is the only viable near term solution for renewable hydrogen generation

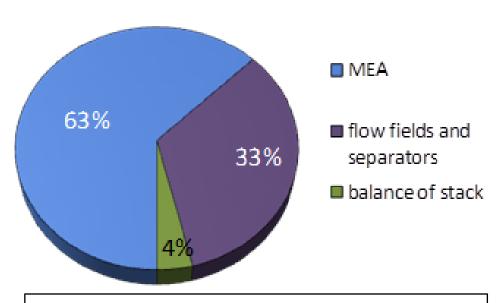
PEM electrolysis is the technically preferred option

 Need to address high cost/ high energy electrode manufacturing processes

High catalyst loadings:
 high energy cost in mining

Proton exchange membrane (PEM) cell

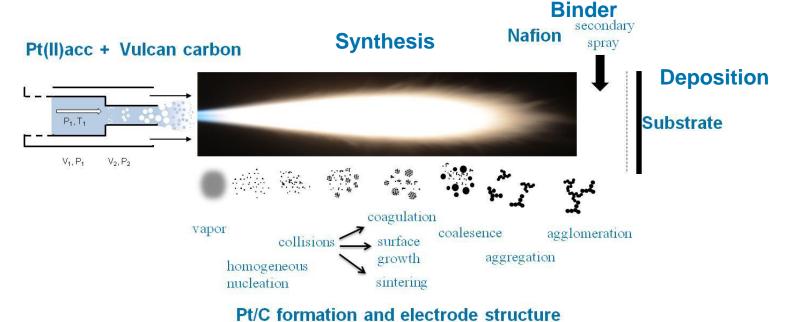

Current Practice


 Legacy process dating to Apollo space program

 Manual operation uses high loadings

Overdesigned to manage process inconsistencies.

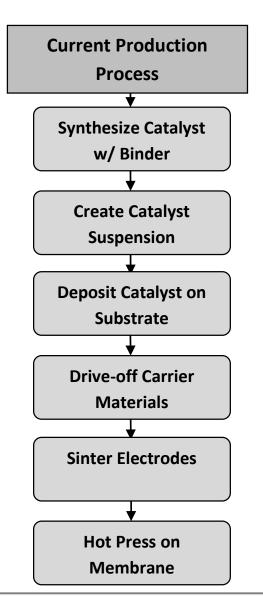
- Multiple process steps and significant amount of "art"
- Energy intensive steps throughout process.

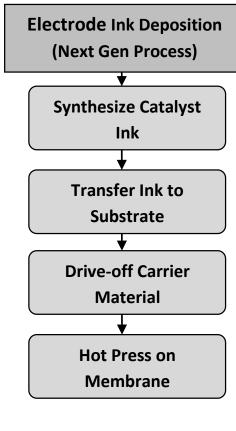

Cost breakdown (top) and labor breakdown (bottom) for major stack components

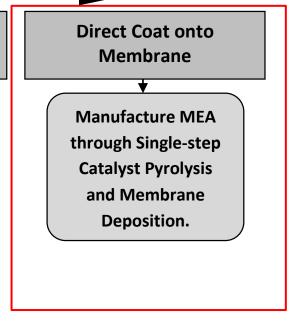
Solution

- Reactive spray deposition technique (RSDT)
 - Addresses major cost and energy contributor in PEM electrolyzer through reduced PGM usage
 - Flexible to catalyst type (metal, oxide) and substrate (polymer, carbon, metal)
 - Enables reduced catalyst usage and roll to roll fabrication

Project Objectives


- Develop low metal-content electrodes
 - Optimize catalyst composition
 - Down-select electrode configuration
 - Develop optimal formulation for RSDT
 - Show feasibility of low membrane usage MEAs
- Scale-up to high volume, low-energy deposition of catalyst with improved utilization
 - Develop pilot scale RSDT apparatus
 - Scale up MEAs & demonstrate stable performance



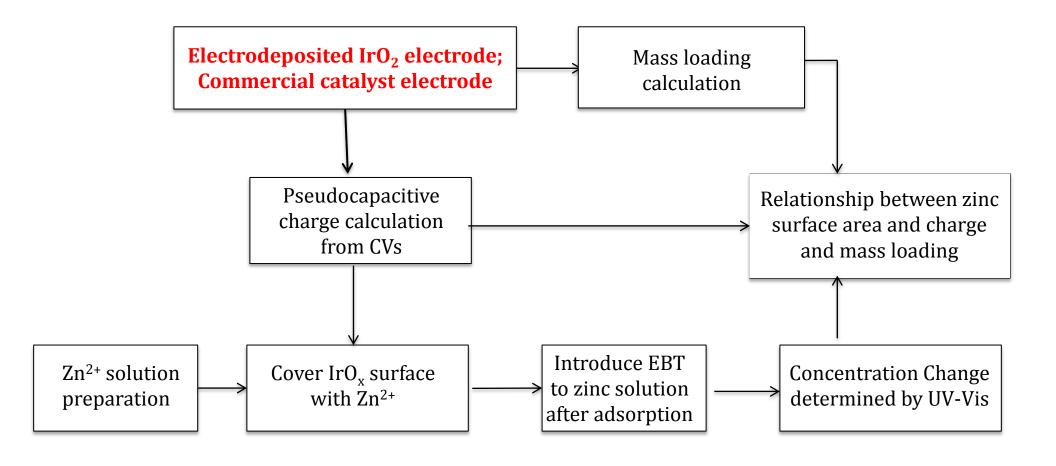


Project Objective: Scope

MEA Manufacturing Process Development Pathway

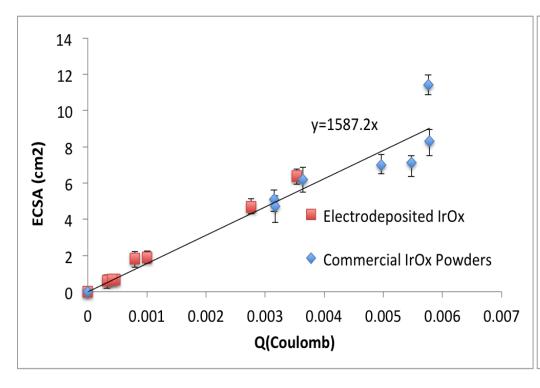
Project Target

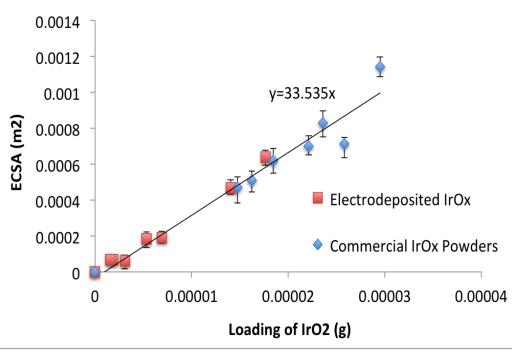
Technical Barriers


- Determination of anode catalyst utilization
 - Traditional electrochemically active surface area techniques not viable
- Catalyst optimization by RSDT
 - Tune parameters for ideal structure, thickness, support/ionomer ratio, and porosity
- Development of stable electrocatalyst supports
 - Anode material compatibility presents challenge
- Scale-up and process demonstration
 - Translate practice to apparatus capable of high volume, low energy manufacturing

Technical Approach: IrO_x ECSA

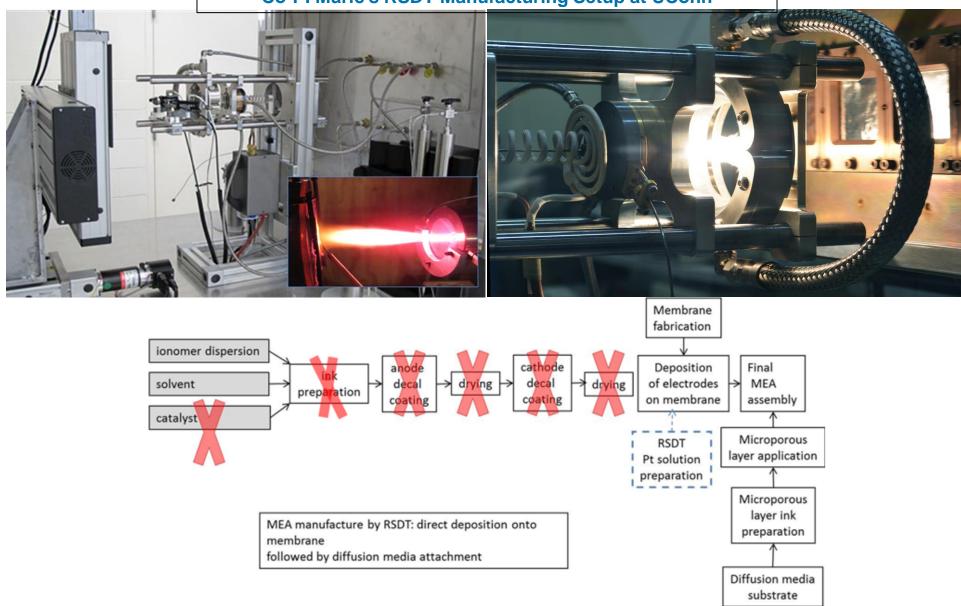
Zinc cation adsorption method





Technical Approach: IrO_x ECSA

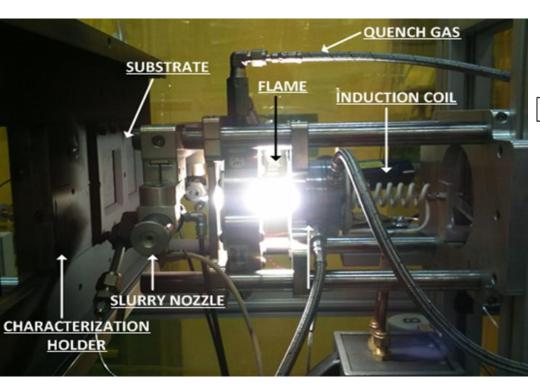
- Two electrochemical systems merged together to give out the final correlation values
- Method of quality control for RSDT



Technical Approach: RSDT

Technical Approach: Optimization

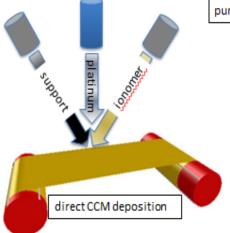
Independent parameter control during deposition process


Process Parameter	unit	area of interaction					
precursor concentration	molarity	metal deposition rate, platinum morphology, droplet size and back pressure					
flow rate	mL/min	flame length, atomization, particle formation and residence time, temperature profile					
nozzle temperature	°C	droplet size, dryness of droplets, back pressure and spray stability					
collimating gas	SLPM	spray angle, flame velocity, laminar or turbulent flame, oxidizing potential, and substrate temperature					
pilot oxygen and methane	SLPM	maintain combustion of spray					
equivalence ratio	unitless	flame temperature, shape, droplet residence time					
quench air flow rate	SLPM	cools reaction zone, Pt deposition pattern					
quench angle	θ from centerline	deposition rate and pattern, substrate temperature, causes eddys					

Technical Approach: Scale Up

Current RSDT equipment at UCONN (left) and a schematic of proposed roll-to-roll process (right).

disperse support material

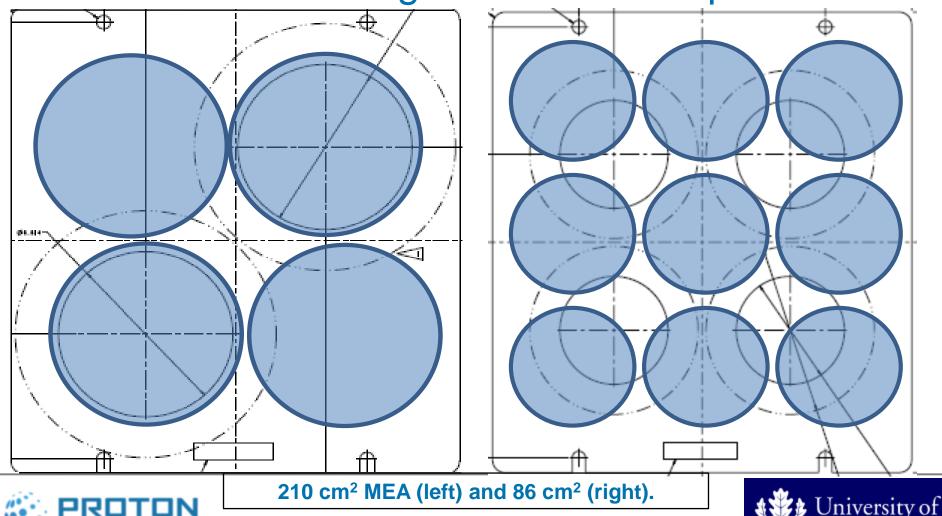

pump into nozzle 2

dissolve platinum-organic precursor in solvent/fuel

pump into nozzle 1

dilute ionomer material

pump into nozzle 3



Technical Approach: Alternative Sealing

- Development of low membrane usage MEA design enables throughput up to 2X.
- Allows for easier integration with web process

Commercialization Experience

From Single to Multi-Stack Systems

HOGEN® S Series GC

HOGEN® H Series

28 cm² 0.05 Nm³/hr 0.01 kg/day

86 cm² 2 Nm³/hr 4.3 kg/day

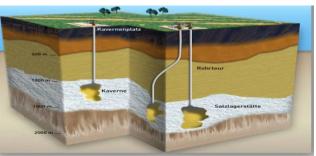
210 cm² 10 Nm³/hr 21.6 kg/day

Transition and Deployment

Today:

- Power plants
- Industrial (reducing env.)
- Lab applications
- Lifting gas (Weather balloons/Aerostats)

Emerging:


- Storing renewable energy
- Making methane (biogas)
- Fueling vehicles

Heat Treating

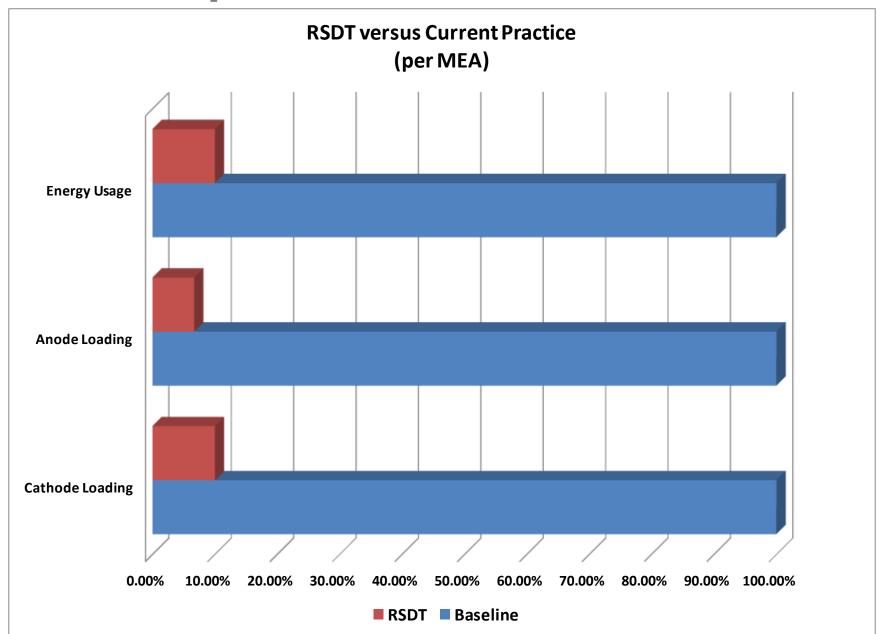
Semiconductors

Laboratories

Government

Transition and Deployment

- Megawatt scale PEM launched
 - Would further benefit from RSDT.
- Addresses demand for:
 - Wind capture (100GW)
 - Biogas (>3000 plants)



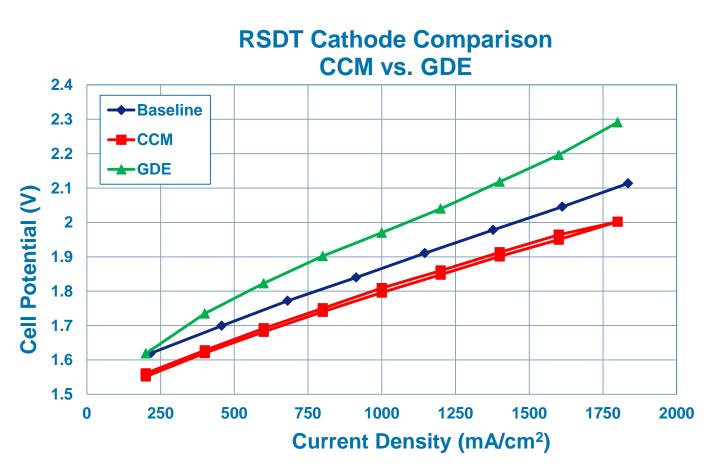
Expected Improvements: RSDT

Config. Score Sheet for Downselect

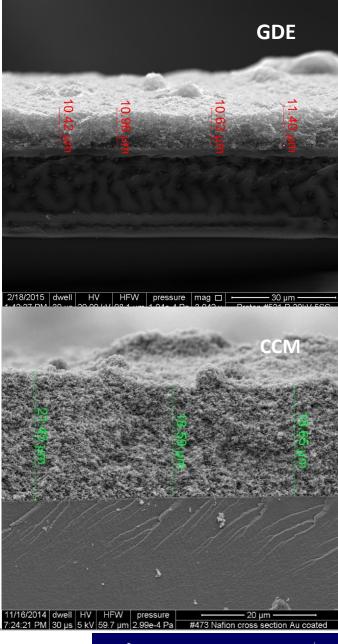
	All CC	M	CCM Anode GDE Cathode		CCM Catho GDE Anod		All GDE				
	Technique	Score	Technique	Score	Technique	Score	Technique	Score			
Build type	Dry	+3	Dry	+3	Dry	+3	Wet & Dry	+1			
Next Gen Cell Design (Reduced Seal Area)	Gasket & O-ring	+1	Gasket & O-ring	+1	Gasket & O-ring	+1	O-ring	+3			
Substrate changes	1-Step Anode Cathode X-Over	+1	2-Step a) X-Over/Anode b) Cathode	+3	2-Step a) X-Over/Anode b) Cathode	+3	3-Step a) X-Over b) Anode c) Cathode	+5			
Readiness of deposition technologies	a) X-Over b) Anode c) Cathode	+1 +3 +1	a) X-Over b) Anode c) Cathode	+1 +3 0	a) X-Over b) Anode c) Cathode	+1 +3 +1	a) X-Over b) Anode c) Cathode	0 +3 +1			
Impact to current cell design	Drop-in	+1	GDE integration required	+3	GDE integration required	+3	GDE integration required	+3			
Total		11		14		15		16			

Progress: Project Milestones

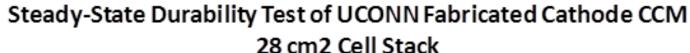
Milestone Description	Responsible	Due Date
Project Kick-off	Proton, UCONN	08/19/2014
Baseline ITO stability	UCONN	10/15/2014
Demonstration of ECA measurement of model catalyst in RDE	UCONN	12/1/2014
Down-select cathode electrode configuration (CCM versus GDE) and formulation	Proton, UCONN	3/1/2014
Complete alternate frame load and stress calculations	Proton	3/1/2014
Conduct 200 hour durability test of down-selected cathode config. at 28 cm ² level	Proton, UCONN	4/15/2014
Extension of ECA measurement to in situ catalyst measurements	UCONN	5/1/2015
Finalize design and CAD drawings for alternate frame concept	Proton	5/15/2015
Demonstrate performance and stability of first IrO ₂ /ITO catalysts	Proton, UCONN	6/15/2015
Demonstrate RSDT anode performance equivalency to Proton baseline	Proton, UCONN	8/15/2015
Procure and verify prototype parts through hydrostatic sealing tests	Proton	9/15/2015
Conduct 200 hour durability test of down-selected config. at 28 cm ² level	Proton, UCONN	10/15/2015
Scale-up and conduct operational tests of alternative frame design	Proton	12/15/2015
Demonstration of 89 cm ² MEAs using optimal RSDT Scale-up	Proton, UCONN	1/1/2016
Conceptual Design for Industrial Scale RSDT	UCONN	5/1/2016
Achieve 500 hours of operation at 89 cm ² cell level	Proton, UCONN	6/1/2016
Scale-up Cost Analysis	Proton	7/1/2016
Complete Final Reporting	Proton, UCONN	7/27/2016

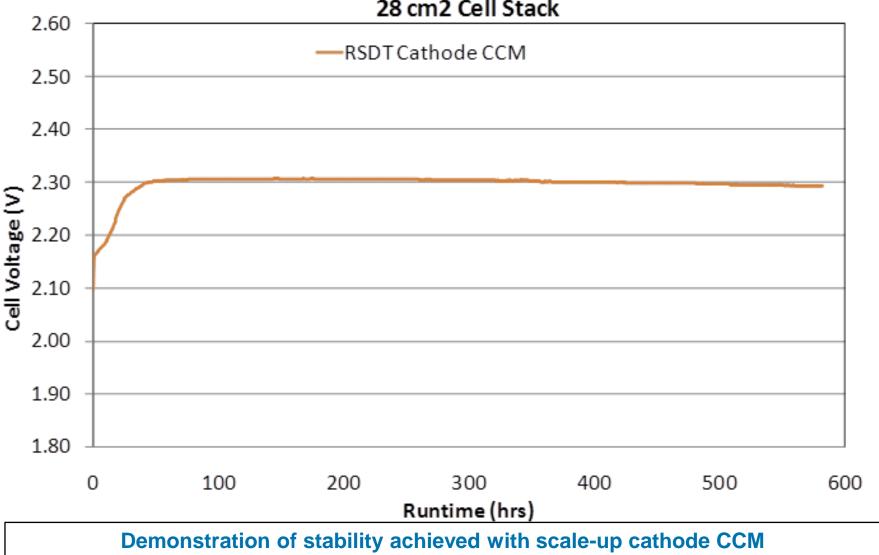

Technical Accomplishments

- Cathode Development
 - Demonstrated single step manufacture of electrode.
 - Down-selected the catalyst coated membrane (CCM) pathway
- Anode Development
 - Initial evaluation of single-step fabrication
- Alternate Seal Design
 - Concepts have shown reduction in membrane usage by ~40%
 - Computational modeling has verified cell concepts to work within acceptable mechanical loading and stress values
- Stack Scale-up and Verification
 - Initiated scale-up activities by transitioning cathode test from bench hardware to commercial platform



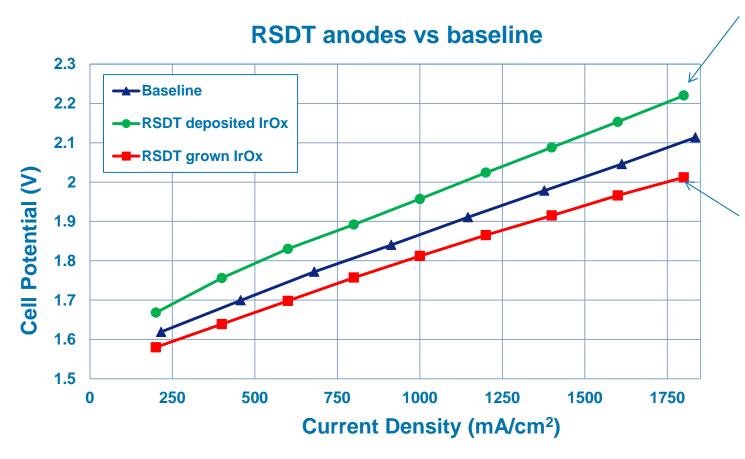
Technical Accomplishments: Cathode

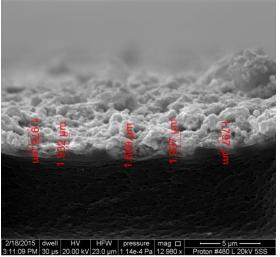

 Demonstrated improved performance compared to baseline at 1/10 loading

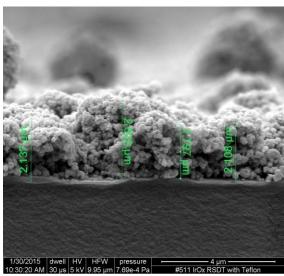


Technical Accomplishments: Stability Testing

Cathode vs. Anode Comparison


Input	Cathode	Anode
Composition	Metal – Polymer Composite	Oxide – Polymer Composite
Particle Size	~5 – 10 nm	> 10 nm
Porosity	Gas Transport	Gas/Water Transport
Loading	0.15 mg/cm ²	>0.5 mg/cm ²
Precursor	Known	Known
Carrier Known Gas/Flame		Known
Support	Carbon	Oxygen/Potential Compatible


Completed In-Process Needs Development



RSDT Grown IrOx Anode vs RSDT Deposited Anode

 Performance in favor of in-situ grown electrode, refinement in stability is on-going

Conclusions

Cathode Development

- Cathode CCM down-selected over GDE
 - Comparable durability; enables single-step process
 - Scale-up demonstrated

Alternative Sealing Design

- Concepts evaluated and drawings created.
 - Feasibility confirmed through modeling
 - Stress modeling of parts completed.
- Prototype hardware has been designed for sealing tests

Future Work

Anode Development

- Robust OER catalyst at reduced loading
 - Apply in-situ ECSA measurements
 - Translate best-practice from cathode
 - Down-select GDE vs CCM
 - Verify through operational testing

RSDT Scale-up and Concept Design

- Complete design and build apparatus
- Demonstrate in scale-up parts
- Stack Scale-up and Verification
 - Operate multi-cell stack w/RSDT electrodes

Collaborators

- University of Connecticut
 - Designed and developed RSDT apparatus
 - Conduct and optimize electrode depositions
 - Build and verify scaled-up prototype unit
 - Develop and apply ECSA QC technique
- CAE Associates
 - Design verification through computer modeling/simulation

