Combined Heat and Power (CHP) Technology Development

Project 19864, Agreement 19128
Oak Ridge National Laboratory
October 1, 2012 – September 30, 2015

John Storey
Oak Ridge National Laboratory

U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C.

May 28-29, 2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Objective of the ORNL CHP R&D program

The project objectives are to improve the efficiency and viability of Combined Heat and Power systems and high-efficiency electrical generation systems, while supporting the U.S. manufacturing base.

- Advance the state-of-the-art of CHP
- CHP offers great benefits and potential savings but is under-utilized due to barriers including high capital costs and lack of flexibility to match the electrical and thermal loads
- Address the complications of a wide range of demands, geography, complexity of equipment, grid interface, and utility policy

Technical Approach – Conduct R&D along Three Main Thrusts

- High Efficiency through Advanced Thermodynamics Power generation and integration of CHP into the industrial sector
 - Directed toward 1 10 MW systems including combined modes, e.g. solid oxide fuel cell plus turbine.
- Materials development and characterization
 Investigating lower cost, high performance, high temperature materials for critical components to enable higher efficiency
 - Higher temperature heat exchangers are critical to micro-turbine efficiency and other applications
- Additive Manufacturing for CHP Components
 Removing traditional manufacturing constraints from the design of heat exchangers and engines
 - Initial focus on small-scale engines and heat pipes

Technical Approach – Task Description

- High efficiency power generation through advanced thermodynamics
 - Modeling of high efficiency electrical generation regimes
 - Software tool that allows users to examine hourly energy usage for each industrial sub-sector to identify CHP opportunities
- Materials development and characterization
 - Higher temperature heat exchangers drive efficiency gains
 - Lower cost materials and coatings enable CHP market penetration
 - Recovery of waste heat from hostile industrial environments e.g. Electric Arc Furnaces
- Additive Manufacturing for Components
 - Fabricate and evaluate a working engine with additive manufacturing
 - Design and fabricate novel CHP components with additive manufacturing

The technical approach connects advanced manufacturing to energy efficiency

ORNL Manufacturing Demonstration Facility

Additive Manufacturing:

Novel devices not limited by traditional fabrication

High Temperature Materials – advanced characterization

High Efficiency through advanced thermodynamics:

Design & evaluate new energy conversion devices & materials

Materials:

High temperature and AM-specific alloy development & component characterization

Transition and Deployment

- This is pre-competitive research: results being published and presented
 - 12 publications and 18 presentations since June 2012
- Working with industry in all three thrusts
- End users are equipment manufacturers, facilities
- CHP can improve the bottom line for industry through reduced energy use

Technology Sustainment Model: Applying advanced technologies to CHP from a variety of disciplines including materials, thermodynamics, and additive manufacturing

Impact of Existing and Future Research

- Modeling suggests electrical power generation efficiency of > **65**% is possible using a multiple generator approach *e.g.* a solid oxide fuel cell and turbine
- IGATE-E CHP Software tool has identified the CHP potential at the manufacturing plant and locality level e.g. the steam needs of the top 20 boiler industries represents **0.5 quad** annually. The utility of CHP on an hourly basis can be assessed.
- Low cost, high temperature **ORNL** alloy deployed to two micro-turbine manufacturers. Micro-turbine installed at ORNL for long term demonstration of alloys.
- Waste heat from existing domestic Electric Arc Furnaces represents 1/3 of a quad.

Example: High-Efficiency Electrical Generation at the 1-10 MW scale

Fuel-To-Electricity Efficiency (FTEE)

Maximum practical limit **65-70%** on a Higher Heating Value **(HHV)** basis using natural gas

- Literature studies allow ~65% Combined Cycle in theory
- Modeling at ORNL showed up to 70% possible in theory
- Larger (>200 MW) systems more likely to approach limit
- Systems at 1-10 MW this efficient not market-feasible

Known Technical Challenges to Achieve 65-70% FTEE at the 1-10 MW Scale

Materials

- Existing, in-use metal alloys, ceramics lack corrosion, temperature resistance to operate at highest efficiency
- Exotic materials may be better, but can have durability issues; value of 1-10 MW systems doesn't support cost

Friction, viscous flow, external heat losses

- The smaller volume/surface area ratio (more fluid-wall interaction) of 1-10 MW systems. increases the importance of friction and viscous flow losses, as well as external heat losses

Control Science

- Precise control of air-fuel ratio in combustion and fuel cell chemical processes is critical to achieving high efficiency and may be enabled by model-based controls that are more common to higher value systems
- High-speed sensors and feedback algorithms may facilitate rapid response to changes in system dynamics and promote the most efficient output; not common on lower value systems

Optimization

- Optimizing individual cycles in a combined system will not result in optimized output
- Co-optimization of all of the components is necessary for the highest possible efficiency and particularly important for a 1-10 MW system due to the lower system flows and potential losses between components

Heat Exchanger Design

- Efficient heat transfer between fluids is crucial, particularly in 1-10 MW systems which have lower volume flows than larger systems.
- Typical commercial heat exchangers are designed for ease of manufacturing and known materials. Novel processes, such as additive manufacturing, may overcome current limitations in heat exchanger design.

Future Measures of Success

- 10% improvement in engine efficiency for advanced reciprocating and turbine systems
- Adoption of an Electric Arc Furnace waste heat recovery system
- Utilization of one or more advanced alloys or additive manufacturing techniques by an equipment manufacturer
- Software tool in use by industry and regional application centers to identify new opportunities for industrial CHP
- Build CHP system component not currently manufactured using Additive Manufacturing as a final or prototyping step

Project Management & Budget

- Project is ongoing: June 2014 May 2015 being reviewed
- Thrust 1: High Efficiency through Advanced Thermodynamics
 Milestone: IGATE-CHP: Completion of Geospatial Representation aligned with
 Regional CHP Centers Technical Assistance Partnerships (TAPs) due 3/31/2015, complete
- Thrust 2: Materials development and characterization

Milestone: Complete characterization of alumina-forming austenitic (AFA) steel air cells after 3,000h microturbine test and compare to performance of current commercial alloy due 9/30/2015, complete ahead of schedule

Milestone: Energy and mass balance analysis on actual EAF off-gas data acquired from a steel mill for the stationary regenerator heat recovery system and the fluidized bed concept *due* 3/31/2015, *complete*.

Thrust 3: Additive Manufacturing for Components

Milestone: Manufacture and demonstrate the operation of a complete miniature engine with embedded sensors *due* 6/30/2015, *complete*.

Total Project Budget	
DOE Investment	\$1,200
Cost Share	This a pre-competitive program
Project Total	\$1,200K

Results and Accomplishments

- Project tasks on schedule
- Milestones on schedule or have been met for June 30
- Results: High Efficiency through Advanced Thermodynamics
 - Incorporated geography, thermal base loads, and electrical base loads by 4-digit SIC code into validated IGATE-E software tool to assess CHP potential across industry subsectors.
- Results: Materials Development and Characterization
 - Measured temperature of EAF off-gases at a commercial steel mill
 - Lower-cost, ORNL-developed stainless steel deployed in turbine
 - Patent being submitted on new high temperature alloy
- Results: Additive Manufacturing for Components
 - Fabricated and evaluated complete miniature engine with embedded sensors
 - Designed, manufactured, and characterized a novel heat pipe for heat exchanger applications

Example: Heat Exchanger Enhancement using Additive Manufacturing to Embed Heat Pipes

- Heat pipes significantly increase the heat transfer rate versus conventional heat exchangers
- No external pumping of a heat exchanger fluid
 - Wicking drives the capillary flow
- Successful implementation in Titanium and Cobalt-Chromium based powder machines, now working with mesh and groove structures
- X-rays and thermal images accelerated R&D by characterizing the wick structure in terms of porosity, a critical design variable.
- Demonstrated superior thermal management potential of AM heat pipes –
- 100-1000X improvement in heat conductance over base material

Loop Heat Pipe Evaporator Section

Example: Additive Manufacturing used to fabricate working engine

- Additive manufacturing (AM) enabled the incorporation of titanium as an engine material thereby improving efficiency
 - Printed titanium head was successfully operated over 20 hours
 - Titanium head provided 7% increase in efficiency for low speed conditions (compared to stock aluminum head).
 - Titanium has a much lower thermal conductivity which translated into higher in-cylinder heat retention, thereby improving combustion efficiency.
- AM also enabled in-cylinder pressure measurement, leading to a first-order analysis of the energy balance for small-scale engines.
 - Full printed engine (shown at left) is currently being evaluated. To date engines have been printed out of titanium and inconel alloys.
- Bearings composed of bronze were also printed and are being evaluated.

Example: National-level, Web-based CHP Potential Analysis using the IGATE-E CHP Tool

IGATE-E IAC, ESA, and MNI **Databases Database** Schema** 45 tables-MySQL Interactive Visual Analytic Dashboard Manufacturing Plants and their Simple Spark Spread estimates, Thermal- Electric ratios at SIC, state, and

zip code levels

State or Regional-level Overview

Plant Specific TE* ratios and SS* estimates

State, County, and Zip Code-level Filter/Zoom Capability

TE and SS Box Plots & Outliers by Industry Sub-sector

^{*}TE – Thermal to Electric ratio and SS – Simple spark spread, as defined in the CHP Resource Guide by Midwest CHP TAP.

^{**}A database schema of a database system is its structure described in a formal language supported by the database management system (DBMS) and refers to the organization of data as a blueprint of how a database is constructed (Source – Wiki).

Example: Significant Waste Heat Recovery opportunity in Electric Arc Furnace exhaust gases/other metals processing

- Total waste heat recovery potential (TBtu/year) = 280
- Total avoided CO₂ emissions (Million MT/year) = 18.3
- Avoided annual CO₂ emissions are equivalent to:
 - 3.8 million passenger vehicles
 - 1.7 million homes' energy use
 - 4.8 coal-fired power plants
- Challenges: Temperatures and noncontinuous process

Example: Computationally-designed high-temperature Ni-base alloy for gas turbines

- Objective: develop new wrought Ni-base combustor liner alloy with improved oxidation and creep resistance
- Impact: improve gas micro-turbine durability/efficiency/cost
 - 1% point efficiency gain = 20 TWh/year in U.S. electricity
- 2015: alloy patent application drafted for submission
 - Oxidation: 1150°C 1h cycles in air+10%H₂O (simulate exhaust)
 - Strength: 1093-1150°C creep life matches commercial Haynes alloy 230

Example Result: Turbine Manufacturers evaluating High Temperature Recuperator Materials in engines

- Impact: Higher efficiency turbines for less cost
 - Increased market penetration of high efficiency CHP
- Alumina-forming austenitic (AFA) steel invented by ORNL licensed by Carpenter Technology
 - Commercial foils tested in humid environments at 650-800°C for 15000h exhibit excellent oxidation resistance
 - First Capstone C65 micro-turbine tests with AFA air cells exhibited very limited oxidation degradation after 3000h
 - New C65 micro-turbine test with a rainbow (AFA, 310 and 120) recuperator starting in May 2015 at ORNL
 - 8000h engine durability test
 - integrated into ORNL microgrid

C65 micro-turbine test at ORNL