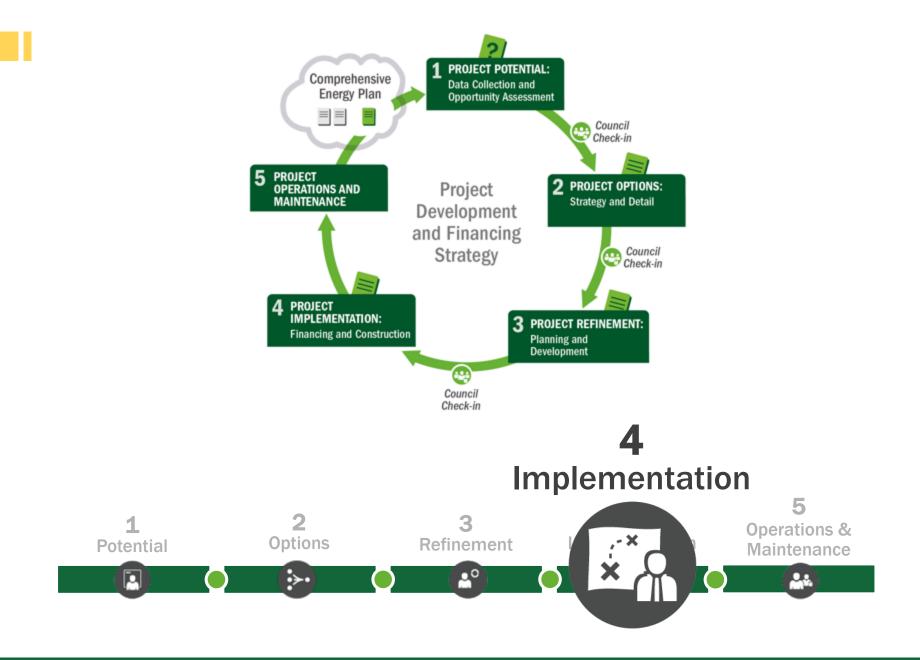
DOE OFFICE OF INDIAN ENERGY The Five-Step Development Process Step 4: Project Implementation



Presentation Agenda

- Step 4: Project Implementation
 - Pre-construction
 - Contract execution
 - Interconnection
 - Project construction
 - Commissioning
- Project Example

Step 4: Implementation

Purpose: Contract and begin physical construction of project

Tasks:

- Finalize pre-construction activities including project agreements financial, contractual, and interconnection
- Realize construction and equipment installation
- Realize interconnection
- Realize project commissioning leading to facility/community project operation

Output: Completed project (operation)

Implementation Activities

- Pre-construction
 - Financial closing (if applicable)
 - Project kickoff _
 - Design and construction documents, plans/schedules, submittals
- Contract execution
 - Contract oversight/quality control
 - Change control
- Interconnection
 - Application review and approval process —
 - Final building inspection _
 - Paperwork submittal to utility
- **Project Construction**
 - Contract oversight/quality control
 - Change control
- Commissioning
 - Testing and verification _
 - Interconnection verification (utility)
 - Utility permission to operate _

Pre-construction: Financial Closing

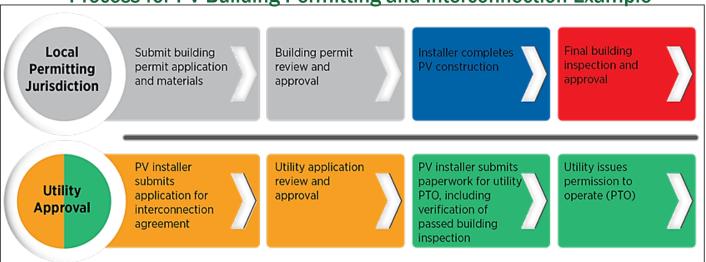
The process of completing all project-related financial transactions, finalizing and closing the project financial accounts, disposing of project assets, and releasing the work site.

A few key st*e*ps:

- Establish and communicate final date for all financial transactions and account closings *well before closing*
- Verify all items from the statement of work have been completed before disbursing final payments
- Collect all financial records and verify that all financial obligations have been satisfied
- Close all financial accounts
- Transfer or dispose of assets according to the acquisition plan.

Pre-construction: Project Kickoff and Design and Construction Documents

- Kickoff meeting
- Checklists for schedules and each activity based on contract and project documents
- Utility interconnection process and agreement
- Design (often in stages) and design approvals
- Other possible plans:
 - Utility
 - Construction
 - Management
 - Quality control
 - Commissioning
 - Environmental protection
 - Security


Contract Execution

- Verify contract documentation
- Obtain contract approvals
- Book the contract
- Transfer project responsibility to project manager

Interconnection

- Installing a renewable energy project requires multiple approval and process steps, including local permitting jurisdiction, installer, and utility.
- Four distinct steps:
 - 1. Utility interconnection application review and approval process
 - 2. Construction
 - 3. Final building inspection and paperwork submittal to utility
 - 4. Utility permission to operate
- Usually takes approximately 15–20 days for residential and/or small commercial projects.
- Typically, one must obtain a building permit from the local jurisdiction and sign an interconnection agreement with the local utility.

Process for PV Building Permitting and Interconnection Example

Retrieved from Ardani et al., "A state-level comparison of processes and timelines for distributed photovoltaic interconnection in the United States." http://www.nrel.gov/docs/fy15osti/63556.pdf

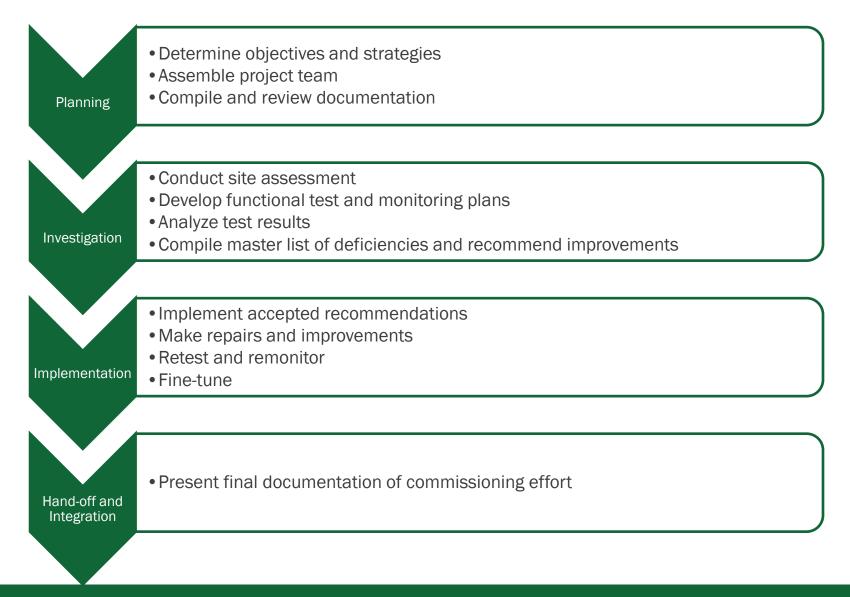
Interconnection cont.

- Utilities prefer installers to submit an application for interconnection early on in project development before construction
- Some utilities are allowing systems that are 30 kW or less to be fast-tracked without any preconstruction utility application reviews or approvals
- Smaller systems pose fewer risks of adverse system impacts
- Different utilities have different thresholds (i.e., system sizes) for modeling and mitigation

Project Construction

- The system has received building approval from the local permitting authority housing jurisdiction, but has not yet received final authorization for interconnection or permission to operate
- Project developer orders equipment and begins construction or installation
- Construction manager coordinates work of various trades
- Close coordination with tenants if site or building is occupied
- Frequent communication between all parties to minimize possible issues

Commissioning


- To receive final interconnection authorization from a utility, the installer must first submit verification of passed final building inspection
- Project interconnected according to utility interconnection agreement and utility process
- Plan may be standardized by developer and technology and may be refined according to individual system design
- Witnessing and/or third party independent commissioning may be stipulated
- Commissioning
 - Physical inspection
 - Component Testing
 - Whole system performance testing

Commissioning cont.

- Once the building inspections and commissioning process are complete, all required paperwork is submitted to the utility (e.g., relay settings, as-built drawings, etc.)
- Upon approval of all paperwork, the utility will likely install a net meter (for net-metered systems) and finally issue a permission to operate letter.
- After permission is granted, the installer is allowed to energize the system.

Commissioning Process Example

14

Project Risk: Community- and Facility-Scale

Phases	Risks	Risk Assessment Post Step 4	\checkmark
Development	 Poor or no renewable energy resource assessment 	Low; site picked	\checkmark
	 Not identifying or unrealistic estimation of all possible costs 	Low; detailed model	\checkmark
	 Incorrect estimation of long-term "community" energy use 	Low; detailed model	\checkmark
	 Utility rules and ability to offset use with centralized production 	Low; final projection	\checkmark
Site	• Structural (e.g. rooftop solar, wind loading, soil conditions)	None; addressed	\checkmark
	 Installation safety (e.g., wind tower, hazard) 	None; addressed	\checkmark
	Site control for safety/security purposes	Low; site secure	\checkmark
Permitting	 Tribe-adopted codes and permitting requirements 	Low; complete	\checkmark
	Utility interconnection requirements	None; complete	\checkmark
Finance	Capital availability	None; finalized	\checkmark
	Incentive availability risk	None; finalized	\checkmark
Construction/ Completion	EPC difficulties	None; contracted	\checkmark
	Cost overruns	None; construction complete	\checkmark
	Schedule		
Operating	Output shortfall from expected	Assumed low, mitigable or	
	Technology O&M	allocatable	

*NOTE: Underlining signifies that the risk assessment outcome changes during the step at hand.

Adapted from Holland & Hart, RE Project Development & Finance & Infocast, Advanced RE Project Finance & Analysis

