A Novel Flash Ironmaking Process DE-EE0005751 American Iron and Steel Institute/University of Utah 09/01/2012 - 07/31/2017

Joseph Vehec, American Iron and Steel Institute

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objective

- Develop a new ironmaking process with significant reduction in energy consumption and CO₂ generation
- Blast furnace requires coke and pelletization and/or sintering of iron ore concentrate
 - Consumes large amounts of energy and carbon $\rightarrow \mathrm{CO}_2$ emissions
- Alternative ironmaking processes must have:
 - Large production capacities (e.g., ~1,000,000 tpy of iron)
 - Use the main raw material (i.e., iron ore) with minimal pretreatment

Technical Approach

Novel Flash Ironmaking replacing cokemaking and Blast Furnace

American Iron and Steel Institute

Technical Approach

- Install and commission Large-Scale Bench Reactor
- Comprehensive testing program
- Industrial pilot plant design
- Multidisciplinary team:
 - American Iron and Steel Institute
 - ArcelorMittal USA
 - TimkenSteel
 - United States Steel Corporation
 - Berry Metal Company
 - Bench reactor fabrication
 - University of Utah
 - Lead Research Organization

Transition and Deployment

American Iron and Steel Institute

Transition and Deployment

- Benefits steel users and steel-related industry
 - US Steel industry would be the end user
- Used to produce iron as a raw material for steelmaking resulting in:
 - Direct use of iron ore concentrate
 - Low capital cost
 - Scalable to large capacities
 - Avoidance of cokemaking

nd Steel

- Commercialization through licensing & royalty
- Sustainable as a more energy efficient and green ironmaking process

Measure of Success

- If successful, will produce iron at a lower cost using less energy and emit less CO₂
- Potential energy savings: ~3.5 GJ/ton Fe vs. avg. Blast Furnace
- CO₂ emission: < 36% vs. avg. Coke Oven/Blast Furnace route

Metric	H ₂ -based process	Reformerless natural gas process	Blast Furnace process
Energy Requirement (GJ/ton of hot metal)	11.3	14.5	18.0
CO ₂ emission (tons/ton of hot metal)	0.04	1.02	1.60

• NPV for standard case (15 year period): \$401M (2010)/(1 M tpy) Natural gas cost: \$5/M (2010) BTU HHV

Project Management & Budget

Task	Description	Milestones		
TASK	Task Description	Key Inputs	Criteria	Date
1	Bench Scale Reactor	Go/No Go Decision # 1:		7/31/2015
	-Installation	Operating Temperature	1400°C	
	-Commission	Solid feed rate	>1 kg/hr	
		Operation time	>6 hr	
2	Testing Program	Go/No Go Decision # 2:		11/30/15
	-Existing Utah flash reactor	Metallization	95%	
	-Drop-tube reactor	Min. amt. reducing gas	3.ox	
	-Large Scale Bench Reactor	Go/No Go Decision # 3:		5/31/16
	-CFD model	Metallization	95%	
		Min. amt. reducing gas	1.5X	
		Milestone # 4:		11/30/16
		Metallization	95%	
		Solid feed rate	>5 kg/hr	
3	Industrial pilot reactor			4/30/17
	-Design and Cost estimate			
4	Program Administration			7/31/17

Total Project Budget			
DOE Investment	\$ 8,000,000		
Cost Share	\$ 2,600,000		
Project Total	\$10,600,000		

Results and Accomplishments

- Completed formulation of CFD model for operation at different temperatures, gas compositions, and particles
- Achieved 80-95% metallization
 - Fuel/reductant: Hydrogen or Methane
 - Reaction time: 4-7 seconds
 - Temperature: $\sim 1200^{\circ}$ C \rightarrow Target 1300 $^{\circ}$ C
 - Solid feed rate: 0.1 0.2 kg/h
- Determined the kinetics of magnetite reduction with hydrogen using drop tube reactor at 1400 - 1600°C

Next Steps

- Complete installation and commission large-scale bench reactor July 2015
- Large-Scale Bench Reactor tests with Natural Gas - 2015/2016
 - Generate information on optimum operating temperature, gas velocity, reactor dimensions, and refractory type
- Industrial pilot plant design April 2017
 - Construction of flow sheets
 - Complete material and energy balances
 - Design and cost estimate

