

OAK RIDGE RESERVATION GROUNDWATER STRATEGY STATUS

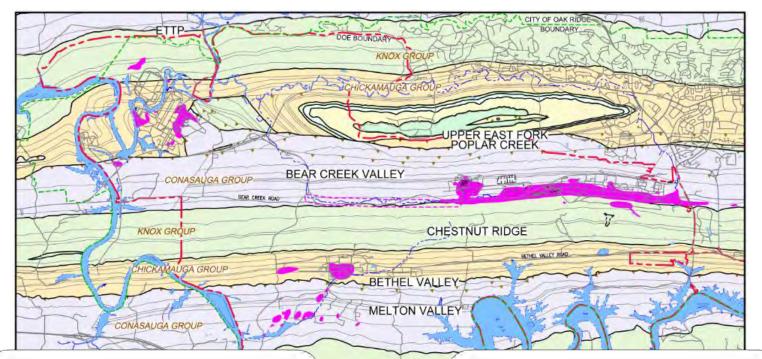
Bill McMillan, Portfolio Federal Project Director Steve Cooke, DOE Project Manager Steve Haase, Ph.D., RSI Senior Geohydrologist

June 10, 2015

OAK RIDGE RESERVATION GROUNDWATER STRATEGY STATUS June 2015

AGENDA:

- Groundwater Strategy overview
- Groundwater Strategy implementation status
 - Groundwater Program
 - Off-site Groundwater Assessment
 - ORR Regional flow model
- Next priorities
- Long-term implementation


Groundwater Strategy

- workshops held with regulators in 2013 identified and ranked plumes and projects
- DOE/EPA/TDEC agreement on Groundwater Strategy document in 2014
- Purpose: Document a path forward for managing legacy groundwater challenges
- **Objectives**: Support decision-making and identify actions to:

Protect off-site human health and environment Protect groundwater and restore to beneficial use wherever practicable Achieve final cleanup

GROUNDWATER STRATEGY Plume and project ranking

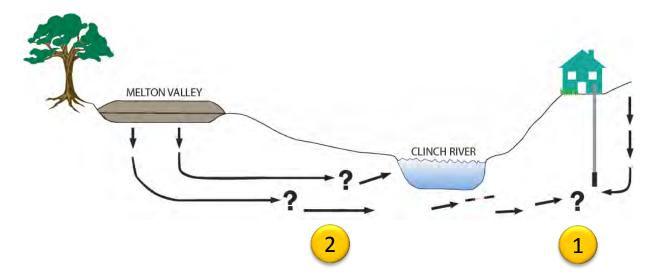
KNOX GROUI

35 "plumes" defined

- major constituents of potential concern: tritium, strontium-90, technetium-99, uranium, nitrate, VOCs, and mercury
- shallow (<100 ft), intermediate, and deep (>400 ft) contamination
- data gaps and uncertainties

36 candidate projects

- projects address one or more plumes
- investigations
- early actions
- other projects to be identified based on findings



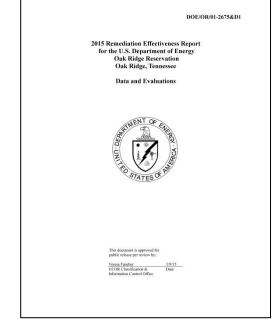
- Set up a Groundwater Program to implement the strategy
 - systematically prioritize and investigate plumes and data gaps
 - identify actions that may be warranted
 - support CERCLA decisions
- Perform Off-site Groundwater Assessment
 - first priority project to address potential off-site risk
- Develop and maintain an ORR regional flow model
 - help predict flowpaths
 - optimize investigations and preparedness for remediation and decisionmaking
 - provide framework for site-specific models

First groundwater strategy priority is:

- potential off-site migration
- protection of off-site human health and environment
- **top-ranked plume:** *Melton Valley exit pathway from undetermined*

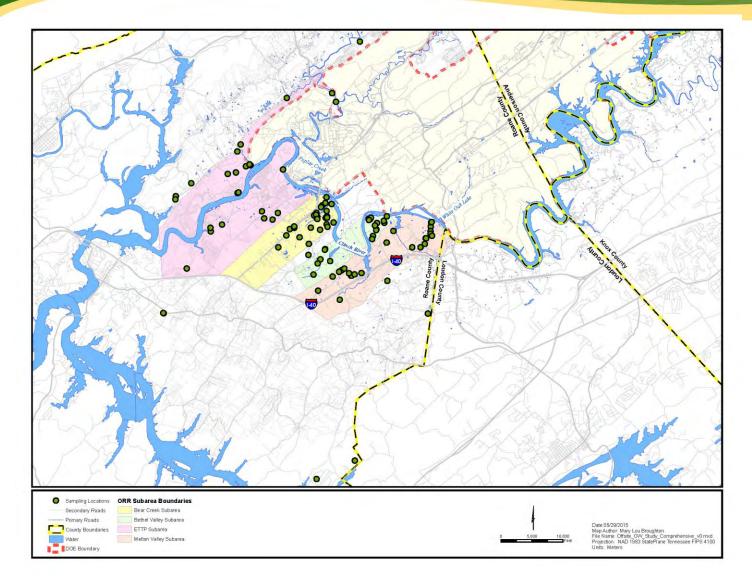
sources

top-ranked project: Off-site Groundwater Assessment (2014)

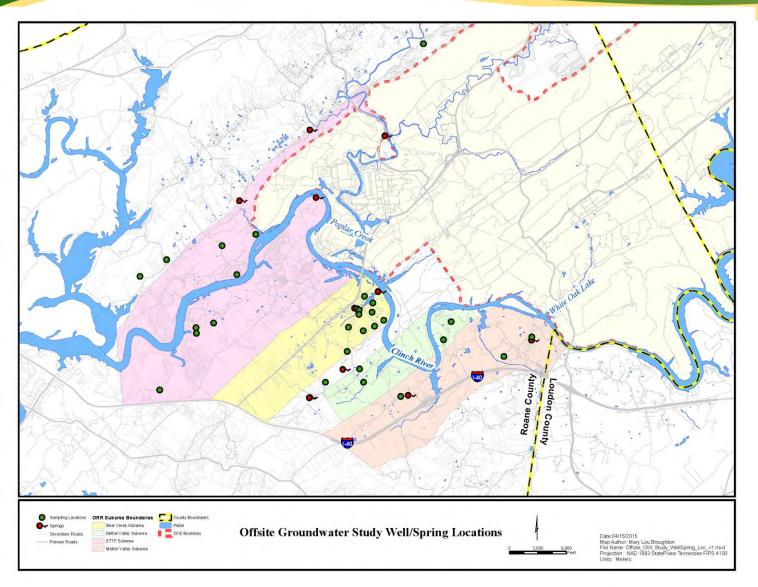

next projects: increase understanding of contaminant movement

											FIS	SCAL	_ YE	AR										
	04	1	13		04	14 Q2 Q3 Q		04	01	1	15		01	1	16		01	17				1	8	04
GROUNDWATER STRATEGY	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Charter							1				1	}				}		}						
Workshops																								
Groundwater Strategy (D1 and D2)																								
STRATEGY RECOMMENDATIONS		3	:		<u>, </u>	}	;		;	}	;	}	;	}	;	}	;	}					}	
Groundwater Program																		}						
Base program												On	t going	Strate	egy In	nplem	entati	ion						\rightarrow
Off-site Groundwater Assessment																								74
Gather data/DQO												}												
D1 RSE Work Plan							\diamond					}												
Sampling and analysis		1						•	\diamond									1		******				
RSE Report (D1 and D2)																	\diamond							000000000000000000000000000000000000000
ORR Regional Flow Model																								
Gather data/establish TAG																								
Test Case Model (Y-12 area)																								
Draft Regional Model																								
Maintain Regional Model																								
FUTURE PROJECTS (TBD)		•			Ŀ	1	L				L	1	L			1		1						
RI Work Plan		ļ				ļ						ļ				ļ		ļ				\diamond		
Construct site-specific models																								
Other																								
ORR Groundwater Milestone																								

- Groundwater Program was initiated in 2014
 - part of the existing Water Resources Restoration
 Program (WRRP)
 - full-time senior hydrogeologist, technical support
 - limited well development and sampling
 - groundwater modeling
- Summary of progress in annual Remediation Effectiveness Report


- Remedial Site Evaluation (RSE) Work Plan approved in 2014
 - tri-party effort followed DQO process
 - TDEC co-sampling at select locations

- conducted site visits and obtained access agreements
- first sampling event in FY 2015 Q2 was successfully completed
- second sampling event in FY 2015 Q4
- confirmatory sampling as needed in FY 2016
- RSE report of results in November 2016


Off-site Groundwater Assessment Potential sampling locations

Properties evaluated as possible sampling locations

Off-site Groundwater Assessment Well and spring locations

Locations:	
Well	32
Spring	11
Total	43

- Initial screening of results from the first sampling event shows exceedances of U.S. EPA National Primary Drinking Water Standards at 3 of 43 locations sampled
- Exceedances are for lead (at one location); lead and gross alpha activity (at another location); and combined radium-226 and radium-228 activity (at another location)
- Review of the results is ongoing and includes evaluation of probable naturally-occurring causes:
 - elevated turbidity and suspended solids
 - naturally-occurring radon

Communication matrix outlines how information is to be exchanged, used for decision-making, and communicated

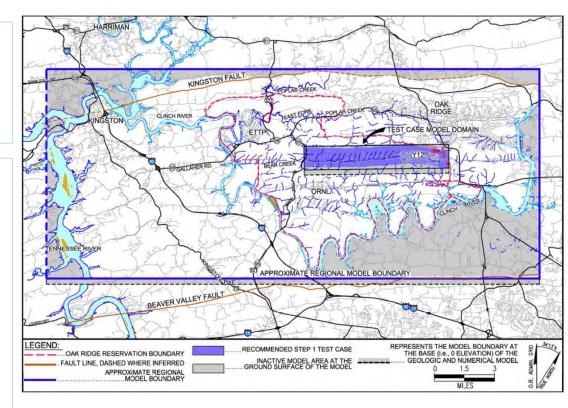
- flowchart developed jointly by DOE and State of Tennessee (Tennessee Department of Environment and Conservation [TDEC] and Tennessee Department of Health [TDH])
- data collection, data interpretation, and decision-making phases
 - sample results compared to human health and ecological screening levels
 - data sharing and information exchange among DOE, TDEC, and TDH
 - DOE to send letters summarizing results to property owners
 - TDH to communicate with property owners for locations with exceedances of health based screening levels
 - July 2015 meeting to confirm evaluation results from the FY15 Q2 sampling event and determine if confirmatory sampling is needed

Multi-year effort began in FY 2014 to develop model for the ORR and surrounding area

- Purpose:
 - tool to be used and refined to support future groundwater decisionmaking on the ORR
 - describe likely regional groundwater flow boundary conditions and help predict regional flowpaths
 - support future development of more detailed models in specific areas (e.g., remedial action sites, deep flow)
 - support "what if" scenario evaluations to better understand groundwater flow
 - help identify data gaps and guide well placement

- A Technical Advisory Group (TAG) formed in 2014:
 - DOE, EPA, and TDEC representatives and industry experts
 - TAG member from the USGS serves as an interface between the TAG and the ORSSAB
- Model areal extent has been tentatively identified
- EarthVision[®] software was selected for development of geologic model
- USGS code MODFLOW-USG was selected for development of numeric flow model pending Test Case results
 - software is being tested using a Test Case Model (Y-12 area)

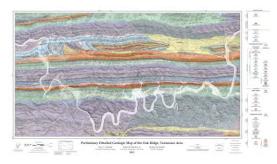
ORR Regional Flow Model and Test Case Model


Areal extent of models

Regional model

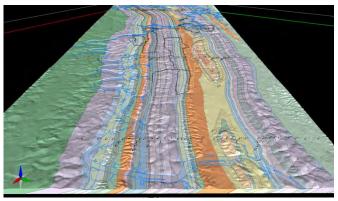
- area is ~ 25 x 10 miles, or ~250 square miles
- depth is to sea level (~1000 ft)

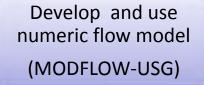
Test Case model (blue shaded area)

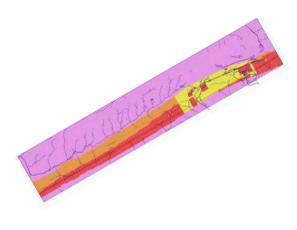

- Y-12 area was selected due to the large amount of available data and presence of representative geologic formations
- geologic model area is ~42 square miles
- flow model area is ~ 8 square miles
- depth is to sea level (~1000 ft)

Model development phases

Collect data


 surface, subsurface, and hydrology data collected from multiple sources

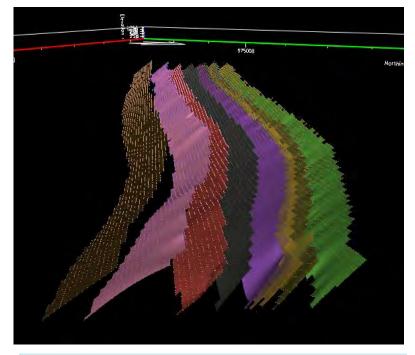



Develop geologic model (EarthVision[®])

- 3-D representation of geology
- exists primarily to provide input to numeric flow model (MODFLOW-USG)
- attempts to honor the geologic configuration without being overly complex

- USGS software MODFLOW-USG
- conduit flow capability
- calibrate model using available data
- use model to evaluate groundwater flow and identify data gaps

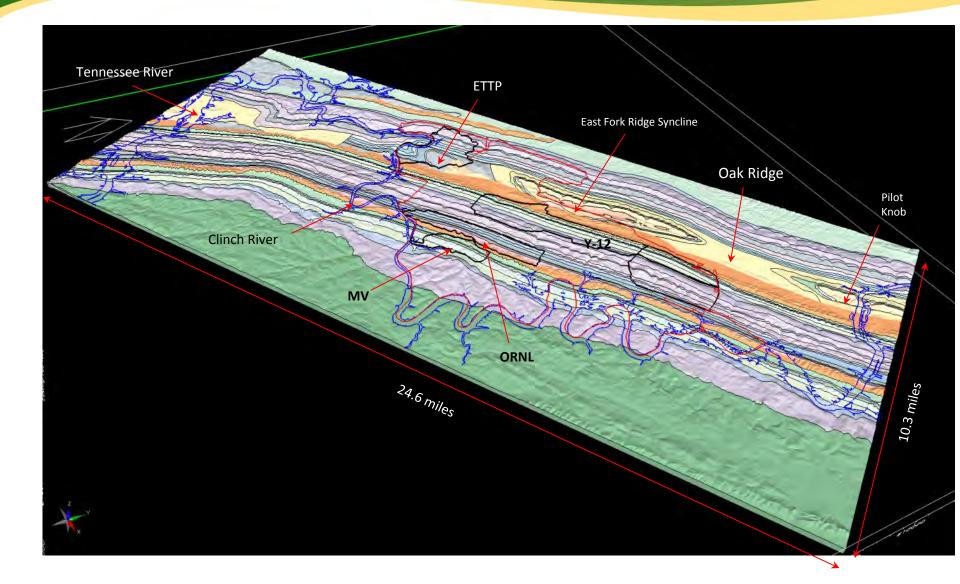
Model development status


OFFICE OF ENVIRONMENTAL MANAGEMENT

Test Case model

- activities to evaluate workflow processes and software capabilities are nearing completion
- Test Case lessons learned are being captured for inclusion and application in the regional scale model

Regional model


- construction has been completed in segments to create a unified, regional scale geologic model
- next steps:
 - export regional geologic model data (EarthVision[®]) to numeric flow model (MODFLOW-USG)
 - build out and calibrate the regional numeric flow model

Exporting from EarthVision[®] of Text Case model data of dipping geologic formation surfaces for use in MODFLOW-USG.

ORR Regional geologic model

- FY 2018 milestone for Remedial Investigation Work Plan
 - placeholder for next priority groundwater project, such as:
 - project to install/sample wells in Melton Valley or Bear Creek
 Valley area to increase understanding of contaminant plumes and reduce data gaps
 - selection will be guided by off-site results and plume ranking
- Groundwater Program
 - full-time hydrogeologist, technical support, etc., integrated with WRRP
 - continue work on regional model/site-specific models
- Other candidate projects include:
 - determine an approach for addressing Melton Valley hydrofracture issues (top-ranked project for interior plumes)
 - remediation projects
 - ETTP Sitewide Treatability Study
 - Bethel Valley 7000 area remediation

Prepare for and reach final groundwater decisions.

- Most final RODs are scheduled in the last 10 15 years of ORR cleanup
- Groundwater Strategy recommends an ongoing Groundwater Program with integrated monitoring and pre-Remedial Investigation efforts to help prepare for complex CERCLA decisions

	FISCAL YEAR 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 4																																
	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
ETTP																																	
ETTP Sitewide ROD									•																								
Y-12																																	
Bear Creek Burial Ground ROD																																	
Bear Creek Valley Final ROD																																	
UEFPC Final ROD																				٠													
Chestnut Ridge ROD																								•									
ORNL																																	
Melton Valley Final ROD																																	
Bethel Valley Final ROD																						•	•										
Groundwater Contamination So Final Groundwater Decision RO		e Ar	ea F	ROD																													